mirror of
https://github.com/CompVis/stable-diffusion.git
synced 2025-01-08 11:57:40 +08:00
[Safety Checker] Add Safety Checker Module
This commit is contained in:
parent
7b8c883b07
commit
d0c714ae4a
@ -16,12 +16,29 @@ from ldm.util import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
|
||||
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
||||
from transformers import AutoFeatureExtractor
|
||||
|
||||
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-v-1-3", use_auth_token=True)
|
||||
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-v-1-3", use_auth_token=True)
|
||||
|
||||
def chunk(it, size):
|
||||
it = iter(it)
|
||||
return iter(lambda: tuple(islice(it, size)), ())
|
||||
|
||||
|
||||
def numpy_to_pil(images):
|
||||
"""
|
||||
Convert a numpy image or a batch of images to a PIL image.
|
||||
"""
|
||||
if images.ndim == 3:
|
||||
images = images[None, ...]
|
||||
images = (images * 255).round().astype("uint8")
|
||||
pil_images = [Image.fromarray(image) for image in images]
|
||||
|
||||
return pil_images
|
||||
|
||||
|
||||
def load_model_from_config(config, ckpt, verbose=False):
|
||||
print(f"Loading model from {ckpt}")
|
||||
pl_sd = torch.load(ckpt, map_location="cpu")
|
||||
@ -220,7 +237,9 @@ def main():
|
||||
if opt.fixed_code:
|
||||
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
|
||||
|
||||
print("start code", start_code.abs().sum())
|
||||
precision_scope = autocast if opt.precision=="autocast" else nullcontext
|
||||
precision_scope = nullcontext
|
||||
with torch.no_grad():
|
||||
with precision_scope("cuda"):
|
||||
with model.ema_scope():
|
||||
@ -269,7 +288,11 @@ def main():
|
||||
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
||||
grid_count += 1
|
||||
|
||||
toc = time.time()
|
||||
image = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
|
||||
|
||||
# run safety checker
|
||||
safety_checker_input = pipe.feature_extractor(numpy_to_pil(image), return_tensors="pt")
|
||||
image, has_nsfw_concept = pipe.safety_checker(images=image, clip_input=safety_checker_input.pixel_values)
|
||||
|
||||
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
||||
f" \nEnjoy.")
|
||||
|
Loading…
Reference in New Issue
Block a user