2024-02-09 23:08:38 -05:00
|
|
|
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Team
|
|
|
|
"""Implementation of model loader service."""
|
|
|
|
|
|
|
|
from typing import Optional
|
|
|
|
|
2024-02-10 18:09:45 -05:00
|
|
|
from invokeai.app.invocations.baseinvocation import InvocationContext
|
2024-02-09 23:08:38 -05:00
|
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
2024-02-10 18:09:45 -05:00
|
|
|
from invokeai.app.services.invocation_processor.invocation_processor_common import CanceledException
|
|
|
|
from invokeai.app.services.model_records import ModelRecordServiceBase, UnknownModelException
|
|
|
|
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelType, SubModelType
|
2024-02-09 23:08:38 -05:00
|
|
|
from invokeai.backend.model_manager.load import AnyModelLoader, LoadedModel, ModelCache, ModelConvertCache
|
|
|
|
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
2024-02-10 18:09:45 -05:00
|
|
|
from invokeai.backend.model_manager.load.model_cache import ModelCacheBase
|
2024-02-09 23:08:38 -05:00
|
|
|
from invokeai.backend.util.logging import InvokeAILogger
|
|
|
|
|
|
|
|
from .model_load_base import ModelLoadServiceBase
|
|
|
|
|
|
|
|
|
|
|
|
class ModelLoadService(ModelLoadServiceBase):
|
|
|
|
"""Wrapper around AnyModelLoader."""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
app_config: InvokeAIAppConfig,
|
|
|
|
record_store: ModelRecordServiceBase,
|
2024-02-10 18:09:45 -05:00
|
|
|
ram_cache: Optional[ModelCacheBase[AnyModel]] = None,
|
2024-02-09 23:08:38 -05:00
|
|
|
convert_cache: Optional[ModelConvertCacheBase] = None,
|
|
|
|
):
|
|
|
|
"""Initialize the model load service."""
|
|
|
|
logger = InvokeAILogger.get_logger(self.__class__.__name__)
|
|
|
|
logger.setLevel(app_config.log_level.upper())
|
|
|
|
self._store = record_store
|
|
|
|
self._any_loader = AnyModelLoader(
|
|
|
|
app_config=app_config,
|
|
|
|
logger=logger,
|
|
|
|
ram_cache=ram_cache
|
|
|
|
or ModelCache(
|
|
|
|
max_cache_size=app_config.ram_cache_size,
|
|
|
|
max_vram_cache_size=app_config.vram_cache_size,
|
|
|
|
logger=logger,
|
|
|
|
),
|
|
|
|
convert_cache=convert_cache
|
|
|
|
or ModelConvertCache(
|
|
|
|
cache_path=app_config.models_convert_cache_path,
|
|
|
|
max_size=app_config.convert_cache_size,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
2024-02-10 18:09:45 -05:00
|
|
|
def load_model_by_key(
|
|
|
|
self,
|
|
|
|
key: str,
|
|
|
|
submodel_type: Optional[SubModelType] = None,
|
|
|
|
context: Optional[InvocationContext] = None,
|
|
|
|
) -> LoadedModel:
|
|
|
|
"""
|
|
|
|
Given a model's key, load it and return the LoadedModel object.
|
|
|
|
|
|
|
|
:param key: Key of model config to be fetched.
|
|
|
|
:param submodel: For main (pipeline models), the submodel to fetch.
|
|
|
|
:param context: Invocation context used for event reporting
|
|
|
|
"""
|
2024-02-09 23:08:38 -05:00
|
|
|
config = self._store.get_model(key)
|
2024-02-10 18:09:45 -05:00
|
|
|
return self.load_model_by_config(config, submodel_type, context)
|
|
|
|
|
|
|
|
def load_model_by_attr(
|
|
|
|
self,
|
|
|
|
model_name: str,
|
|
|
|
base_model: BaseModelType,
|
|
|
|
model_type: ModelType,
|
|
|
|
submodel: Optional[SubModelType] = None,
|
|
|
|
context: Optional[InvocationContext] = None,
|
|
|
|
) -> LoadedModel:
|
|
|
|
"""
|
|
|
|
Given a model's attributes, search the database for it, and if found, load and return the LoadedModel object.
|
|
|
|
|
|
|
|
This is provided for API compatability with the get_model() method
|
|
|
|
in the original model manager. However, note that LoadedModel is
|
|
|
|
not the same as the original ModelInfo that ws returned.
|
|
|
|
|
|
|
|
:param model_name: Name of to be fetched.
|
|
|
|
:param base_model: Base model
|
|
|
|
:param model_type: Type of the model
|
|
|
|
:param submodel: For main (pipeline models), the submodel to fetch
|
|
|
|
:param context: The invocation context.
|
|
|
|
|
|
|
|
Exceptions: UnknownModelException -- model with this key not known
|
|
|
|
NotImplementedException -- a model loader was not provided at initialization time
|
|
|
|
ValueError -- more than one model matches this combination
|
|
|
|
"""
|
|
|
|
configs = self._store.search_by_attr(model_name, base_model, model_type)
|
|
|
|
if len(configs) == 0:
|
|
|
|
raise UnknownModelException(f"{base_model}/{model_type}/{model_name}: Unknown model")
|
|
|
|
elif len(configs) > 1:
|
|
|
|
raise ValueError(f"{base_model}/{model_type}/{model_name}: More than one model matches.")
|
|
|
|
else:
|
|
|
|
return self.load_model_by_key(configs[0].key, submodel)
|
|
|
|
|
|
|
|
def load_model_by_config(
|
|
|
|
self,
|
|
|
|
model_config: AnyModelConfig,
|
|
|
|
submodel_type: Optional[SubModelType] = None,
|
|
|
|
context: Optional[InvocationContext] = None,
|
|
|
|
) -> LoadedModel:
|
|
|
|
"""
|
|
|
|
Given a model's configuration, load it and return the LoadedModel object.
|
|
|
|
|
|
|
|
:param model_config: Model configuration record (as returned by ModelRecordBase.get_model())
|
|
|
|
:param submodel: For main (pipeline models), the submodel to fetch.
|
|
|
|
:param context: Invocation context used for event reporting
|
|
|
|
"""
|
|
|
|
if context:
|
|
|
|
self._emit_load_event(
|
|
|
|
context=context,
|
|
|
|
model_config=model_config,
|
|
|
|
)
|
|
|
|
loaded_model = self._any_loader.load_model(model_config, submodel_type)
|
|
|
|
if context:
|
|
|
|
self._emit_load_event(
|
|
|
|
context=context,
|
|
|
|
model_config=model_config,
|
|
|
|
loaded=True,
|
|
|
|
)
|
|
|
|
return loaded_model
|
|
|
|
|
|
|
|
def _emit_load_event(
|
|
|
|
self,
|
|
|
|
context: InvocationContext,
|
|
|
|
model_config: AnyModelConfig,
|
|
|
|
loaded: Optional[bool] = False,
|
|
|
|
) -> None:
|
|
|
|
if context.services.queue.is_canceled(context.graph_execution_state_id):
|
|
|
|
raise CanceledException()
|
2024-02-09 23:08:38 -05:00
|
|
|
|
2024-02-10 18:09:45 -05:00
|
|
|
if not loaded:
|
|
|
|
context.services.events.emit_model_load_started(
|
|
|
|
queue_id=context.queue_id,
|
|
|
|
queue_item_id=context.queue_item_id,
|
|
|
|
queue_batch_id=context.queue_batch_id,
|
|
|
|
graph_execution_state_id=context.graph_execution_state_id,
|
|
|
|
model_config=model_config,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
context.services.events.emit_model_load_completed(
|
|
|
|
queue_id=context.queue_id,
|
|
|
|
queue_item_id=context.queue_item_id,
|
|
|
|
queue_batch_id=context.queue_batch_id,
|
|
|
|
graph_execution_state_id=context.graph_execution_state_id,
|
|
|
|
model_config=model_config,
|
|
|
|
)
|