mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-01-09 12:37:45 +08:00
Add Sd3ModelLoaderInvocation.
This commit is contained in:
parent
9d3f5427b4
commit
009cdb714c
@ -133,6 +133,7 @@ class FieldDescriptions:
|
||||
clip_embed_model = "CLIP Embed loader"
|
||||
unet = "UNet (scheduler, LoRAs)"
|
||||
transformer = "Transformer"
|
||||
mmditx = "MMDiTX"
|
||||
vae = "VAE"
|
||||
cond = "Conditioning tensor"
|
||||
controlnet_model = "ControlNet model to load"
|
||||
@ -140,6 +141,7 @@ class FieldDescriptions:
|
||||
lora_model = "LoRA model to load"
|
||||
main_model = "Main model (UNet, VAE, CLIP) to load"
|
||||
flux_model = "Flux model (Transformer) to load"
|
||||
sd3_model = "SD3 model (MMDiTX) to load"
|
||||
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
|
||||
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
|
||||
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
|
||||
|
63
invokeai/app/invocations/sd3_model_loader.py
Normal file
63
invokeai/app/invocations/sd3_model_loader.py
Normal file
@ -0,0 +1,63 @@
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
Classification,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager.config import SubModelType
|
||||
|
||||
|
||||
@invocation_output("sd3_model_loader_output")
|
||||
class Sd3ModelLoaderOutput(BaseInvocationOutput):
|
||||
"""SD3 base model loader output."""
|
||||
|
||||
mmditx: TransformerField = OutputField(description=FieldDescriptions.mmditx, title="MMDiTX")
|
||||
clip_l: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP L")
|
||||
clip_g: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP G")
|
||||
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
|
||||
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||
|
||||
|
||||
@invocation(
|
||||
"sd3_model_loader",
|
||||
title="SD3 Main Model",
|
||||
tags=["model", "sd3"],
|
||||
category="model",
|
||||
version="1.0.0",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class Sd3ModelLoaderInvocation(BaseInvocation):
|
||||
"""Loads a SD3 base model, outputting its submodels."""
|
||||
|
||||
# TODO(ryand): Create a UIType.Sd3MainModelField to use here.
|
||||
model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.sd3_model,
|
||||
ui_type=UIType.MainModel,
|
||||
input=Input.Direct,
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> Sd3ModelLoaderOutput:
|
||||
model_key = self.model.key
|
||||
if not context.models.exists(model_key):
|
||||
raise ValueError(f"Unknown model: {model_key}")
|
||||
|
||||
mmditx = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
|
||||
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
|
||||
tokenizer_l = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
|
||||
clip_encoder_l = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
|
||||
tokenizer_g = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
|
||||
clip_encoder_g = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
|
||||
tokenizer_t5 = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
|
||||
t5_encoder = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
|
||||
|
||||
return Sd3ModelLoaderOutput(
|
||||
mmditx=TransformerField(transformer=mmditx, loras=[]),
|
||||
clip_l=CLIPField(tokenizer=tokenizer_l, text_encoder=clip_encoder_l, loras=[], skipped_layers=0),
|
||||
clip_g=CLIPField(tokenizer=tokenizer_g, text_encoder=clip_encoder_g, loras=[], skipped_layers=0),
|
||||
t5_encoder=T5EncoderField(tokenizer=tokenizer_t5, text_encoder=t5_encoder),
|
||||
vae=VAEField(vae=vae),
|
||||
)
|
@ -84,8 +84,10 @@ class SubModelType(str, Enum):
|
||||
Transformer = "transformer"
|
||||
TextEncoder = "text_encoder"
|
||||
TextEncoder2 = "text_encoder_2"
|
||||
TextEncoder3 = "text_encoder_3"
|
||||
Tokenizer = "tokenizer"
|
||||
Tokenizer2 = "tokenizer_2"
|
||||
Tokenizer3 = "tokenizer_3"
|
||||
VAE = "vae"
|
||||
VAEDecoder = "vae_decoder"
|
||||
VAEEncoder = "vae_encoder"
|
||||
|
Loading…
Reference in New Issue
Block a user