mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-01-08 11:57:36 +08:00
Use array slicing to calc ddim timesteps
This commit is contained in:
parent
8648da8111
commit
1f0c5b4cf1
@ -65,8 +65,10 @@ def make_ddim_timesteps(
|
||||
if ddim_discr_method == 'uniform':
|
||||
c = num_ddpm_timesteps // num_ddim_timesteps
|
||||
if c < 1:
|
||||
c = 1
|
||||
ddim_timesteps = (np.arange(0, num_ddim_timesteps) * c).astype(int)
|
||||
c = 1
|
||||
|
||||
# remove 1 final step to prevent index out of bound error
|
||||
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))[:-1]
|
||||
elif ddim_discr_method == 'quad':
|
||||
ddim_timesteps = (
|
||||
(
|
||||
@ -84,7 +86,6 @@ def make_ddim_timesteps(
|
||||
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
||||
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
||||
steps_out = ddim_timesteps + 1
|
||||
# steps_out = ddim_timesteps
|
||||
|
||||
if verbose:
|
||||
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
||||
|
Loading…
Reference in New Issue
Block a user