Split LoRA layer implementations into separate files.

This commit is contained in:
Ryan Dick 2024-09-03 18:04:48 +00:00
parent 2622f7dc02
commit 2b3e4e123d
20 changed files with 729 additions and 681 deletions

View File

@ -19,7 +19,7 @@ from invokeai.app.invocations.model import CLIPField
from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.ti_utils import generate_ti_list
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
@ -55,7 +55,6 @@ class CompelInvocation(BaseInvocation):
clip: CLIPField = InputField(
title="CLIP",
description=FieldDescriptions.clip,
input=Input.Connection,
)
mask: Optional[TensorField] = InputField(
default=None, description="A mask defining the region that this conditioning prompt applies to."

View File

@ -36,7 +36,7 @@ from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType, ModelVariantType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState

View File

@ -22,7 +22,7 @@ from invokeai.app.invocations.fields import (
from invokeai.app.invocations.model import UNetField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, PipelineIntermediateState
from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (

View File

@ -1,672 +0,0 @@
# Copyright (c) 2024 The InvokeAI Development team
"""LoRA model support."""
import bisect
from pathlib import Path
from typing import Dict, List, Optional, Set, Tuple, Union
import torch
from safetensors.torch import load_file
from typing_extensions import Self
import invokeai.backend.util.logging as logger
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.raw_model import RawModel
class LoRALayerBase:
# rank: Optional[int]
# alpha: Optional[float]
# bias: Optional[torch.Tensor]
# layer_key: str
# @property
# def scale(self):
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
if "alpha" in values:
self.alpha = values["alpha"].item()
else:
self.alpha = None
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
self.bias: Optional[torch.Tensor] = torch.sparse_coo_tensor(
values["bias_indices"],
values["bias_values"],
tuple(values["bias_size"]),
)
else:
self.bias = None
self.rank = None # set in layer implementation
self.layer_key = layer_key
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
raise NotImplementedError()
def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
return self.bias
def get_parameters(self, orig_module: torch.nn.Module) -> Dict[str, torch.Tensor]:
params = {"weight": self.get_weight(orig_module.weight)}
bias = self.get_bias(orig_module.bias)
if bias is not None:
params["bias"] = bias
return params
def calc_size(self) -> int:
model_size = 0
for val in [self.bias]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)
def check_keys(self, values: Dict[str, torch.Tensor], known_keys: Set[str]):
"""Log a warning if values contains unhandled keys."""
# {"alpha", "bias_indices", "bias_values", "bias_size"} are hard-coded, because they are handled by
# `LoRALayerBase`. Sub-classes should provide the known_keys that they handled.
all_known_keys = known_keys | {"alpha", "bias_indices", "bias_values", "bias_size"}
unknown_keys = set(values.keys()) - all_known_keys
if unknown_keys:
logger.warning(
f"Unexpected keys found in LoRA/LyCORIS layer, model might work incorrectly! Keys: {unknown_keys}"
)
# TODO: find and debug lora/locon with bias
class LoRALayer(LoRALayerBase):
# up: torch.Tensor
# mid: Optional[torch.Tensor]
# down: torch.Tensor
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"]
self.mid = values.get("lora_mid.weight", None)
self.rank = self.down.shape[0]
self.check_keys(
values,
{
"lora_up.weight",
"lora_down.weight",
"lora_mid.weight",
},
)
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
if self.mid is not None:
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
else:
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.up, self.mid, self.down]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype)
class LoHALayer(LoRALayerBase):
# w1_a: torch.Tensor
# w1_b: torch.Tensor
# w2_a: torch.Tensor
# w2_b: torch.Tensor
# t1: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(self, layer_key: str, values: Dict[str, torch.Tensor]):
super().__init__(layer_key, values)
self.w1_a = values["hada_w1_a"]
self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"]
self.t1 = values.get("hada_t1", None)
self.t2 = values.get("hada_t2", None)
self.rank = self.w1_b.shape[0]
self.check_keys(
values,
{
"hada_w1_a",
"hada_w1_b",
"hada_w2_a",
"hada_w2_b",
"hada_t1",
"hada_t2",
},
)
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
if self.t1 is None:
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
else:
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
weight = rebuild1 * rebuild2
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoKRLayer(LoRALayerBase):
# w1: Optional[torch.Tensor] = None
# w1_a: Optional[torch.Tensor] = None
# w1_b: Optional[torch.Tensor] = None
# w2: Optional[torch.Tensor] = None
# w2_a: Optional[torch.Tensor] = None
# w2_b: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.w1 = values.get("lokr_w1", None)
if self.w1 is None:
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
else:
self.w1_b = None
self.w1_a = None
self.w2 = values.get("lokr_w2", None)
if self.w2 is None:
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
else:
self.w2_a = None
self.w2_b = None
self.t2 = values.get("lokr_t2", None)
if self.w1_b is not None:
self.rank = self.w1_b.shape[0]
elif self.w2_b is not None:
self.rank = self.w2_b.shape[0]
else:
self.rank = None # unscaled
self.check_keys(
values,
{
"lokr_w1",
"lokr_w1_a",
"lokr_w1_b",
"lokr_w2",
"lokr_w2_a",
"lokr_w2_b",
"lokr_t2",
},
)
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
w1: Optional[torch.Tensor] = self.w1
if w1 is None:
assert self.w1_a is not None
assert self.w1_b is not None
w1 = self.w1_a @ self.w1_b
w2 = self.w2
if w2 is None:
if self.t2 is None:
assert self.w2_a is not None
assert self.w2_b is not None
w2 = self.w2_a @ self.w2_b
else:
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
assert w1 is not None
assert w2 is not None
weight = torch.kron(w1, w2)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
if self.w1 is not None:
self.w1 = self.w1.to(device=device, dtype=dtype)
else:
assert self.w1_a is not None
assert self.w1_b is not None
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
assert self.w2_a is not None
assert self.w2_b is not None
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class FullLayer(LoRALayerBase):
# bias handled in LoRALayerBase(calc_size, to)
# weight: torch.Tensor
# bias: Optional[torch.Tensor]
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.weight = values["diff"]
self.bias = values.get("diff_b", None)
self.rank = None # unscaled
self.check_keys(values, {"diff", "diff_b"})
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
return self.weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
class IA3Layer(LoRALayerBase):
# weight: torch.Tensor
# on_input: torch.Tensor
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.weight = values["weight"]
self.on_input = values["on_input"]
self.rank = None # unscaled
self.check_keys(values, {"weight", "on_input"})
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
weight = self.weight
if not self.on_input:
weight = weight.reshape(-1, 1)
assert orig_weight is not None
return orig_weight * weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
model_size += self.on_input.nelement() * self.on_input.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
self.on_input = self.on_input.to(device=device, dtype=dtype)
class NormLayer(LoRALayerBase):
# bias handled in LoRALayerBase(calc_size, to)
# weight: torch.Tensor
# bias: Optional[torch.Tensor]
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.weight = values["w_norm"]
self.bias = values.get("b_norm", None)
self.rank = None # unscaled
self.check_keys(values, {"w_norm", "b_norm"})
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
return self.weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer]
class LoRAModelRaw(RawModel): # (torch.nn.Module):
_name: str
layers: Dict[str, AnyLoRALayer]
def __init__(
self,
name: str,
layers: Dict[str, AnyLoRALayer],
):
self._name = name
self.layers = layers
@property
def name(self) -> str:
return self._name
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
# TODO: try revert if exception?
for _key, layer in self.layers.items():
layer.to(device=device, dtype=dtype)
def calc_size(self) -> int:
model_size = 0
for _, layer in self.layers.items():
model_size += layer.calc_size()
return model_size
@classmethod
def _convert_sdxl_keys_to_diffusers_format(cls, state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
diffusers format, then this function will have no effect.
This function is adapted from:
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
Args:
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
Raises:
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
Returns:
Dict[str, Tensor]: The diffusers-format state_dict.
"""
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
not_converted_count = 0 # The number of keys that were not converted.
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
# `input_blocks_4_1_proj_in`.
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
stability_unet_keys.sort()
new_state_dict = {}
for full_key, value in state_dict.items():
if full_key.startswith("lora_unet_"):
search_key = full_key.replace("lora_unet_", "")
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
position = bisect.bisect_right(stability_unet_keys, search_key)
map_key = stability_unet_keys[position - 1]
# Now, check if the map_key *actually* matches the search_key.
if search_key.startswith(map_key):
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
new_state_dict[new_key] = value
converted_count += 1
else:
new_state_dict[full_key] = value
not_converted_count += 1
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
new_state_dict[full_key] = value
continue
else:
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
if converted_count > 0 and not_converted_count > 0:
raise ValueError(
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
f" not_converted={not_converted_count}"
)
return new_state_dict
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
base_model: Optional[BaseModelType] = None,
) -> Self:
device = device or torch.device("cpu")
dtype = dtype or torch.float32
if isinstance(file_path, str):
file_path = Path(file_path)
model = cls(
name=file_path.stem,
layers={},
)
if file_path.suffix == ".safetensors":
sd = load_file(file_path.absolute().as_posix(), device="cpu")
else:
sd = torch.load(file_path, map_location="cpu")
state_dict = cls._group_state(sd)
if base_model == BaseModelType.StableDiffusionXL:
state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
for layer_key, values in state_dict.items():
# Detect layers according to LyCORIS detection logic(`weight_list_det`)
# https://github.com/KohakuBlueleaf/LyCORIS/tree/8ad8000efb79e2b879054da8c9356e6143591bad/lycoris/modules
# lora and locon
if "lora_up.weight" in values:
layer: AnyLoRALayer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_a" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1" in values or "lokr_w1_a" in values:
layer = LoKRLayer(layer_key, values)
# diff
elif "diff" in values:
layer = FullLayer(layer_key, values)
# ia3
elif "on_input" in values:
layer = IA3Layer(layer_key, values)
# norms
elif "w_norm" in values:
layer = NormLayer(layer_key, values)
else:
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
raise Exception("Unknown lora format!")
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer
return model
@staticmethod
def _group_state(state_dict: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, torch.Tensor]]:
state_dict_groupped: Dict[str, Dict[str, torch.Tensor]] = {}
for key, value in state_dict.items():
stem, leaf = key.split(".", 1)
if stem not in state_dict_groupped:
state_dict_groupped[stem] = {}
state_dict_groupped[stem][leaf] = value
return state_dict_groupped
# code from
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
def make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
unet_conversion_map_layer = []
for i in range(3): # num_blocks is 3 in sdxl
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
# if i > 0: commentout for sdxl
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0.", "norm1."),
("in_layers.2.", "conv1."),
("out_layers.0.", "norm2."),
("out_layers.3.", "conv2."),
("emb_layers.1.", "time_emb_proj."),
("skip_connection.", "conv_shortcut."),
]
unet_conversion_map = []
for sd, hf in unet_conversion_map_layer:
if "resnets" in hf:
for sd_res, hf_res in unet_conversion_map_resnet:
unet_conversion_map.append((sd + sd_res, hf + hf_res))
else:
unet_conversion_map.append((sd, hf))
for j in range(2):
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
sd_time_embed_prefix = f"time_embed.{j*2}."
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
for j in range(2):
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
sd_label_embed_prefix = f"label_emb.0.{j*2}."
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
unet_conversion_map.append(("out.0.", "conv_norm_out."))
unet_conversion_map.append(("out.2.", "conv_out."))
return unet_conversion_map
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
}

View File

View File

View File

@ -0,0 +1,10 @@
from typing import Union
from invokeai.backend.lora.layers.full_layer import FullLayer
from invokeai.backend.lora.layers.ia3_layer import IA3Layer
from invokeai.backend.lora.layers.loha_layer import LoHALayer
from invokeai.backend.lora.layers.lokr_layer import LoKRLayer
from invokeai.backend.lora.layers.lora_layer import LoRALayer
from invokeai.backend.lora.layers.norm_layer import NormLayer
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer]

View File

@ -0,0 +1,37 @@
from typing import Dict, Optional
import torch
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
class FullLayer(LoRALayerBase):
# bias handled in LoRALayerBase(calc_size, to)
# weight: torch.Tensor
# bias: Optional[torch.Tensor]
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.weight = values["diff"]
self.bias = values.get("diff_b", None)
self.rank = None # unscaled
self.check_keys(values, {"diff", "diff_b"})
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
return self.weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)

View File

@ -0,0 +1,42 @@
from typing import Dict, Optional
import torch
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
class IA3Layer(LoRALayerBase):
# weight: torch.Tensor
# on_input: torch.Tensor
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.weight = values["weight"]
self.on_input = values["on_input"]
self.rank = None # unscaled
self.check_keys(values, {"weight", "on_input"})
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
weight = self.weight
if not self.on_input:
weight = weight.reshape(-1, 1)
assert orig_weight is not None
return orig_weight * weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
model_size += self.on_input.nelement() * self.on_input.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
self.on_input = self.on_input.to(device=device, dtype=dtype)

View File

@ -0,0 +1,68 @@
from typing import Dict, Optional
import torch
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
class LoHALayer(LoRALayerBase):
# w1_a: torch.Tensor
# w1_b: torch.Tensor
# w2_a: torch.Tensor
# w2_b: torch.Tensor
# t1: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(self, layer_key: str, values: Dict[str, torch.Tensor]):
super().__init__(layer_key, values)
self.w1_a = values["hada_w1_a"]
self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"]
self.t1 = values.get("hada_t1", None)
self.t2 = values.get("hada_t2", None)
self.rank = self.w1_b.shape[0]
self.check_keys(
values,
{
"hada_w1_a",
"hada_w1_b",
"hada_w2_a",
"hada_w2_b",
"hada_t1",
"hada_t2",
},
)
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
if self.t1 is None:
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
else:
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
weight = rebuild1 * rebuild2
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)

View File

@ -0,0 +1,114 @@
from typing import Dict, Optional
import torch
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
class LoKRLayer(LoRALayerBase):
# w1: Optional[torch.Tensor] = None
# w1_a: Optional[torch.Tensor] = None
# w1_b: Optional[torch.Tensor] = None
# w2: Optional[torch.Tensor] = None
# w2_a: Optional[torch.Tensor] = None
# w2_b: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.w1 = values.get("lokr_w1", None)
if self.w1 is None:
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
else:
self.w1_b = None
self.w1_a = None
self.w2 = values.get("lokr_w2", None)
if self.w2 is None:
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
else:
self.w2_a = None
self.w2_b = None
self.t2 = values.get("lokr_t2", None)
if self.w1_b is not None:
self.rank = self.w1_b.shape[0]
elif self.w2_b is not None:
self.rank = self.w2_b.shape[0]
else:
self.rank = None # unscaled
self.check_keys(
values,
{
"lokr_w1",
"lokr_w1_a",
"lokr_w1_b",
"lokr_w2",
"lokr_w2_a",
"lokr_w2_b",
"lokr_t2",
},
)
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
w1: Optional[torch.Tensor] = self.w1
if w1 is None:
assert self.w1_a is not None
assert self.w1_b is not None
w1 = self.w1_a @ self.w1_b
w2 = self.w2
if w2 is None:
if self.t2 is None:
assert self.w2_a is not None
assert self.w2_b is not None
w2 = self.w2_a @ self.w2_b
else:
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
assert w1 is not None
assert w2 is not None
weight = torch.kron(w1, w2)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
if self.w1 is not None:
self.w1 = self.w1.to(device=device, dtype=dtype)
else:
assert self.w1_a is not None
assert self.w1_b is not None
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
assert self.w2_a is not None
assert self.w2_b is not None
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)

View File

@ -0,0 +1,59 @@
from typing import Dict, Optional
import torch
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
# TODO: find and debug lora/locon with bias
class LoRALayer(LoRALayerBase):
# up: torch.Tensor
# mid: Optional[torch.Tensor]
# down: torch.Tensor
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"]
self.mid = values.get("lora_mid.weight", None)
self.rank = self.down.shape[0]
self.check_keys(
values,
{
"lora_up.weight",
"lora_down.weight",
"lora_mid.weight",
},
)
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
if self.mid is not None:
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
else:
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.up, self.mid, self.down]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype)

View File

@ -0,0 +1,74 @@
from typing import Dict, Optional, Set
import torch
import invokeai.backend.util.logging as logger
class LoRALayerBase:
# rank: Optional[int]
# alpha: Optional[float]
# bias: Optional[torch.Tensor]
# layer_key: str
# @property
# def scale(self):
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
if "alpha" in values:
self.alpha = values["alpha"].item()
else:
self.alpha = None
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
self.bias: Optional[torch.Tensor] = torch.sparse_coo_tensor(
values["bias_indices"],
values["bias_values"],
tuple(values["bias_size"]),
)
else:
self.bias = None
self.rank = None # set in layer implementation
self.layer_key = layer_key
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
raise NotImplementedError()
def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
return self.bias
def get_parameters(self, orig_module: torch.nn.Module) -> Dict[str, torch.Tensor]:
params = {"weight": self.get_weight(orig_module.weight)}
bias = self.get_bias(orig_module.bias)
if bias is not None:
params["bias"] = bias
return params
def calc_size(self) -> int:
model_size = 0
for val in [self.bias]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)
def check_keys(self, values: Dict[str, torch.Tensor], known_keys: Set[str]):
"""Log a warning if values contains unhandled keys."""
# {"alpha", "bias_indices", "bias_values", "bias_size"} are hard-coded, because they are handled by
# `LoRALayerBase`. Sub-classes should provide the known_keys that they handled.
all_known_keys = known_keys | {"alpha", "bias_indices", "bias_values", "bias_size"}
unknown_keys = set(values.keys()) - all_known_keys
if unknown_keys:
logger.warning(
f"Unexpected keys found in LoRA/LyCORIS layer, model might work incorrectly! Keys: {unknown_keys}"
)

View File

@ -0,0 +1,37 @@
from typing import Dict, Optional
import torch
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
class NormLayer(LoRALayerBase):
# bias handled in LoRALayerBase(calc_size, to)
# weight: torch.Tensor
# bias: Optional[torch.Tensor]
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.weight = values["w_norm"]
self.bias = values.get("b_norm", None)
self.rank = None # unscaled
self.check_keys(values, {"w_norm", "b_norm"})
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
return self.weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)

View File

@ -0,0 +1,279 @@
# Copyright (c) 2024 The InvokeAI Development team
"""LoRA model support."""
import bisect
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
import torch
from safetensors.torch import load_file
from typing_extensions import Self
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
from invokeai.backend.lora.layers.full_layer import FullLayer
from invokeai.backend.lora.layers.ia3_layer import IA3Layer
from invokeai.backend.lora.layers.loha_layer import LoHALayer
from invokeai.backend.lora.layers.lokr_layer import LoKRLayer
from invokeai.backend.lora.layers.lora_layer import LoRALayer
from invokeai.backend.lora.layers.norm_layer import NormLayer
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.raw_model import RawModel
class LoRAModelRaw(RawModel): # (torch.nn.Module):
_name: str
layers: Dict[str, AnyLoRALayer]
def __init__(
self,
name: str,
layers: Dict[str, AnyLoRALayer],
):
self._name = name
self.layers = layers
@property
def name(self) -> str:
return self._name
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
# TODO: try revert if exception?
for _key, layer in self.layers.items():
layer.to(device=device, dtype=dtype)
def calc_size(self) -> int:
model_size = 0
for _, layer in self.layers.items():
model_size += layer.calc_size()
return model_size
@classmethod
def _convert_sdxl_keys_to_diffusers_format(cls, state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
diffusers format, then this function will have no effect.
This function is adapted from:
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
Args:
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
Raises:
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
Returns:
Dict[str, Tensor]: The diffusers-format state_dict.
"""
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
not_converted_count = 0 # The number of keys that were not converted.
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
# `input_blocks_4_1_proj_in`.
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
stability_unet_keys.sort()
new_state_dict = {}
for full_key, value in state_dict.items():
if full_key.startswith("lora_unet_"):
search_key = full_key.replace("lora_unet_", "")
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
position = bisect.bisect_right(stability_unet_keys, search_key)
map_key = stability_unet_keys[position - 1]
# Now, check if the map_key *actually* matches the search_key.
if search_key.startswith(map_key):
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
new_state_dict[new_key] = value
converted_count += 1
else:
new_state_dict[full_key] = value
not_converted_count += 1
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
new_state_dict[full_key] = value
continue
else:
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
if converted_count > 0 and not_converted_count > 0:
raise ValueError(
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
f" not_converted={not_converted_count}"
)
return new_state_dict
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
base_model: Optional[BaseModelType] = None,
) -> Self:
device = device or torch.device("cpu")
dtype = dtype or torch.float32
if isinstance(file_path, str):
file_path = Path(file_path)
model = cls(
name=file_path.stem,
layers={},
)
if file_path.suffix == ".safetensors":
sd = load_file(file_path.absolute().as_posix(), device="cpu")
else:
sd = torch.load(file_path, map_location="cpu")
state_dict = cls._group_state(sd)
if base_model == BaseModelType.StableDiffusionXL:
state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
for layer_key, values in state_dict.items():
# Detect layers according to LyCORIS detection logic(`weight_list_det`)
# https://github.com/KohakuBlueleaf/LyCORIS/tree/8ad8000efb79e2b879054da8c9356e6143591bad/lycoris/modules
# lora and locon
if "lora_up.weight" in values:
layer: AnyLoRALayer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_a" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1" in values or "lokr_w1_a" in values:
layer = LoKRLayer(layer_key, values)
# diff
elif "diff" in values:
layer = FullLayer(layer_key, values)
# ia3
elif "on_input" in values:
layer = IA3Layer(layer_key, values)
# norms
elif "w_norm" in values:
layer = NormLayer(layer_key, values)
else:
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
raise Exception("Unknown lora format!")
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer
return model
@staticmethod
def _group_state(state_dict: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, torch.Tensor]]:
state_dict_groupped: Dict[str, Dict[str, torch.Tensor]] = {}
for key, value in state_dict.items():
stem, leaf = key.split(".", 1)
if stem not in state_dict_groupped:
state_dict_groupped[stem] = {}
state_dict_groupped[stem][leaf] = value
return state_dict_groupped
# code from
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
def make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
unet_conversion_map_layer = []
for i in range(3): # num_blocks is 3 in sdxl
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
# if i > 0: commentout for sdxl
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0.", "norm1."),
("in_layers.2.", "conv1."),
("out_layers.0.", "norm2."),
("out_layers.3.", "conv2."),
("emb_layers.1.", "time_emb_proj."),
("skip_connection.", "conv_shortcut."),
]
unet_conversion_map = []
for sd, hf in unet_conversion_map_layer:
if "resnets" in hf:
for sd_res, hf_res in unet_conversion_map_resnet:
unet_conversion_map.append((sd + sd_res, hf + hf_res))
else:
unet_conversion_map.append((sd, hf))
for j in range(2):
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
sd_time_embed_prefix = f"time_embed.{j*2}."
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
for j in range(2):
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
sd_label_embed_prefix = f"label_emb.0.{j*2}."
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
unet_conversion_map.append(("out.0.", "conv_norm_out."))
unet_conversion_map.append(("out.2.", "conv_out."))
return unet_conversion_map
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
}

View File

@ -6,7 +6,7 @@ from pathlib import Path
from typing import Optional
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.model_manager import (
AnyModel,
AnyModelConfig,

View File

@ -15,7 +15,7 @@ from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import D
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.model_manager.config import AnyModel
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel

View File

@ -13,7 +13,7 @@ from diffusers import OnnxRuntimeModel, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.model_manager import AnyModel
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel

View File

@ -6,13 +6,13 @@ from typing import TYPE_CHECKING, Tuple
import torch
from diffusers import UNet2DConditionModel
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase
from invokeai.backend.util.devices import TorchDevice
if TYPE_CHECKING:
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage

View File

@ -5,7 +5,8 @@
import pytest
import torch
from invokeai.backend.lora import LoRALayer, LoRAModelRaw
from invokeai.backend.lora.layers.lora_layer import LoRALayer
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher