mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-01-09 04:18:46 +08:00
Make CachedModelWithPartialLoad work with models that have non-persistent buffers.
This commit is contained in:
parent
6bb3c96fa5
commit
510ed6ed1f
@ -57,6 +57,19 @@ class CachedModelWithPartialLoad:
|
|||||||
keys_in_modules_that_do_not_support_autocast.add(key)
|
keys_in_modules_that_do_not_support_autocast.add(key)
|
||||||
return keys_in_modules_that_do_not_support_autocast
|
return keys_in_modules_that_do_not_support_autocast
|
||||||
|
|
||||||
|
def _move_non_persistent_buffers_to_device(self, device: torch.device):
|
||||||
|
"""Move the non-persistent buffers to the target device. These buffers are not included in the state dict,
|
||||||
|
so we need to move them manually.
|
||||||
|
"""
|
||||||
|
# HACK(ryand): Typically, non-persistent buffers are moved when calling module.to(device). We don't move entire
|
||||||
|
# modules, because we manage the devices of individual tensors using the state dict. Since non-persistent
|
||||||
|
# buffers are not included in the state dict, we need to handle them manually. The only way to do this is by
|
||||||
|
# using private torch.nn.Module attributes.
|
||||||
|
for module in self._model.modules():
|
||||||
|
for name, buffer in module.named_buffers():
|
||||||
|
if name in module._non_persistent_buffers_set:
|
||||||
|
module._buffers[name] = buffer.to(device, copy=True)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def model(self) -> torch.nn.Module:
|
def model(self) -> torch.nn.Module:
|
||||||
return self._model
|
return self._model
|
||||||
@ -149,7 +162,10 @@ class CachedModelWithPartialLoad:
|
|||||||
else:
|
else:
|
||||||
apply_custom_layers_to_model(self._model)
|
apply_custom_layers_to_model(self._model)
|
||||||
|
|
||||||
# TODO(ryand): Handle non-persistent buffers.
|
# Move all non-persistent buffers to the compute device. These are a weird edge case and do not participate in
|
||||||
|
# the vram_bytes_loaded tracking.
|
||||||
|
self._move_non_persistent_buffers_to_device(self._compute_device)
|
||||||
|
|
||||||
return vram_bytes_loaded
|
return vram_bytes_loaded
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
@ -179,5 +195,7 @@ class CachedModelWithPartialLoad:
|
|||||||
if self._cur_vram_bytes is not None:
|
if self._cur_vram_bytes is not None:
|
||||||
self._cur_vram_bytes -= vram_bytes_freed
|
self._cur_vram_bytes -= vram_bytes_freed
|
||||||
|
|
||||||
|
# We may have gone from a fully-loaded model to a partially-loaded model, so we need to reapply the custom
|
||||||
|
# layers.
|
||||||
apply_custom_layers_to_model(self._model)
|
apply_custom_layers_to_model(self._model)
|
||||||
return vram_bytes_freed
|
return vram_bytes_freed
|
||||||
|
@ -8,7 +8,25 @@ from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_w
|
|||||||
)
|
)
|
||||||
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.autocast_modules import CustomLinear
|
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.autocast_modules import CustomLinear
|
||||||
from invokeai.backend.util.calc_tensor_size import calc_tensor_size
|
from invokeai.backend.util.calc_tensor_size import calc_tensor_size
|
||||||
from tests.backend.model_manager.load.model_cache.dummy_module import DummyModule
|
|
||||||
|
|
||||||
|
class DummyModule(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.linear1 = torch.nn.Linear(10, 32)
|
||||||
|
self.linear2 = torch.nn.Linear(32, 64)
|
||||||
|
self.register_buffer("buffer1", torch.ones(64))
|
||||||
|
# Non-persistent buffers are not included in the state dict. We need to make sure that this case is handled
|
||||||
|
# correctly by the partial loading code.
|
||||||
|
self.register_buffer("buffer2", torch.ones(64), persistent=False)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
x = self.linear1(x)
|
||||||
|
x = self.linear2(x)
|
||||||
|
x = x + self.buffer1
|
||||||
|
x = x + self.buffer2
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
parameterize_mps_and_cuda = pytest.mark.parametrize(
|
parameterize_mps_and_cuda = pytest.mark.parametrize(
|
||||||
("device"),
|
("device"),
|
||||||
@ -25,9 +43,11 @@ parameterize_mps_and_cuda = pytest.mark.parametrize(
|
|||||||
def test_cached_model_total_bytes(device: str):
|
def test_cached_model_total_bytes(device: str):
|
||||||
model = DummyModule()
|
model = DummyModule()
|
||||||
cached_model = CachedModelWithPartialLoad(model=model, compute_device=torch.device(device))
|
cached_model = CachedModelWithPartialLoad(model=model, compute_device=torch.device(device))
|
||||||
linear_numel = 10 * 10 + 10
|
linear1_numel = 10 * 32 + 32
|
||||||
buffer_numel = 10 * 10
|
linear2_numel = 32 * 64 + 64
|
||||||
assert cached_model.total_bytes() == (2 * linear_numel + buffer_numel) * 4
|
buffer1_numel = 64
|
||||||
|
# Note that the non-persistent buffer (buffer2) is not included in .total_bytes() calculation.
|
||||||
|
assert cached_model.total_bytes() == (linear1_numel + linear2_numel + buffer1_numel) * 4
|
||||||
|
|
||||||
|
|
||||||
@parameterize_mps_and_cuda
|
@parameterize_mps_and_cuda
|
||||||
@ -62,7 +82,9 @@ def test_cached_model_partial_load(device: str):
|
|||||||
assert loaded_bytes < model_total_bytes
|
assert loaded_bytes < model_total_bytes
|
||||||
assert loaded_bytes == cached_model.cur_vram_bytes()
|
assert loaded_bytes == cached_model.cur_vram_bytes()
|
||||||
assert loaded_bytes == sum(
|
assert loaded_bytes == sum(
|
||||||
calc_tensor_size(p) for p in itertools.chain(model.parameters(), model.buffers()) if p.device.type == device
|
calc_tensor_size(p)
|
||||||
|
for n, p in itertools.chain(model.named_parameters(), model.named_buffers())
|
||||||
|
if p.device.type == device and n != "buffer2"
|
||||||
)
|
)
|
||||||
|
|
||||||
# Check that the model's modules have been patched with CustomLinear layers.
|
# Check that the model's modules have been patched with CustomLinear layers.
|
||||||
@ -124,7 +146,12 @@ def test_cached_model_full_load_and_unload(device: str):
|
|||||||
assert unloaded_bytes > 0
|
assert unloaded_bytes > 0
|
||||||
assert unloaded_bytes == model_total_bytes
|
assert unloaded_bytes == model_total_bytes
|
||||||
assert cached_model.cur_vram_bytes() == 0
|
assert cached_model.cur_vram_bytes() == 0
|
||||||
assert all(p.device.type == "cpu" for p in itertools.chain(model.parameters(), model.buffers()))
|
# Note that the non-persistent buffer (buffer2) is not required to be unloaded from VRAM.
|
||||||
|
assert all(
|
||||||
|
p.device.type == "cpu"
|
||||||
|
for n, p in itertools.chain(model.named_parameters(), model.named_buffers())
|
||||||
|
if n != "buffer2"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@parameterize_mps_and_cuda
|
@parameterize_mps_and_cuda
|
||||||
@ -177,7 +204,12 @@ def test_cached_model_full_unload_from_partial(device: str):
|
|||||||
assert unloaded_bytes > 0
|
assert unloaded_bytes > 0
|
||||||
assert unloaded_bytes == loaded_bytes
|
assert unloaded_bytes == loaded_bytes
|
||||||
assert cached_model.cur_vram_bytes() == 0
|
assert cached_model.cur_vram_bytes() == 0
|
||||||
assert all(p.device.type == "cpu" for p in itertools.chain(model.parameters(), model.buffers()))
|
# Note that the non-persistent buffer (buffer2) is not required to be unloaded from VRAM.
|
||||||
|
assert all(
|
||||||
|
p.device.type == "cpu"
|
||||||
|
for n, p in itertools.chain(model.named_parameters(), model.named_buffers())
|
||||||
|
if n != "buffer2"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@parameterize_mps_and_cuda
|
@parameterize_mps_and_cuda
|
||||||
@ -214,7 +246,7 @@ def test_cached_model_full_load_and_inference(device: str):
|
|||||||
assert cached_model.cur_vram_bytes() == 0
|
assert cached_model.cur_vram_bytes() == 0
|
||||||
|
|
||||||
# Run inference on the CPU.
|
# Run inference on the CPU.
|
||||||
x = model(torch.randn(1, 10))
|
x = torch.randn(1, 10)
|
||||||
output1 = model(x)
|
output1 = model(x)
|
||||||
assert output1.device.type == "cpu"
|
assert output1.device.type == "cpu"
|
||||||
|
|
||||||
@ -229,20 +261,8 @@ def test_cached_model_full_load_and_inference(device: str):
|
|||||||
output2 = model(x.to(device))
|
output2 = model(x.to(device))
|
||||||
assert output2.device.type == device
|
assert output2.device.type == device
|
||||||
|
|
||||||
# Full unload the model from VRAM.
|
# The outputs should be the same for both runs.
|
||||||
unloaded_bytes = cached_model.full_unload_from_vram()
|
|
||||||
assert unloaded_bytes > 0
|
|
||||||
assert unloaded_bytes == model_total_bytes
|
|
||||||
assert cached_model.cur_vram_bytes() == 0
|
|
||||||
assert all(p.device.type == "cpu" for p in itertools.chain(model.parameters(), model.buffers()))
|
|
||||||
|
|
||||||
# Run inference on the CPU again.
|
|
||||||
output3 = model(x)
|
|
||||||
assert output3.device.type == "cpu"
|
|
||||||
|
|
||||||
# The outputs should be the same for all three runs.
|
|
||||||
assert torch.allclose(output1, output2.to("cpu"))
|
assert torch.allclose(output1, output2.to("cpu"))
|
||||||
assert torch.allclose(output1, output3)
|
|
||||||
|
|
||||||
|
|
||||||
@parameterize_mps_and_cuda
|
@parameterize_mps_and_cuda
|
||||||
@ -254,7 +274,7 @@ def test_cached_model_partial_load_and_inference(device: str):
|
|||||||
assert cached_model.cur_vram_bytes() == 0
|
assert cached_model.cur_vram_bytes() == 0
|
||||||
|
|
||||||
# Run inference on the CPU.
|
# Run inference on the CPU.
|
||||||
x = model(torch.randn(1, 10))
|
x = torch.randn(1, 10)
|
||||||
output1 = model(x)
|
output1 = model(x)
|
||||||
assert output1.device.type == "cpu"
|
assert output1.device.type == "cpu"
|
||||||
|
|
||||||
@ -267,9 +287,10 @@ def test_cached_model_partial_load_and_inference(device: str):
|
|||||||
assert loaded_bytes < model_total_bytes
|
assert loaded_bytes < model_total_bytes
|
||||||
assert loaded_bytes == cached_model.cur_vram_bytes()
|
assert loaded_bytes == cached_model.cur_vram_bytes()
|
||||||
assert loaded_bytes == sum(
|
assert loaded_bytes == sum(
|
||||||
calc_tensor_size(p) for p in itertools.chain(model.parameters(), model.buffers()) if p.device.type == device
|
calc_tensor_size(p)
|
||||||
|
for n, p in itertools.chain(model.named_parameters(), model.named_buffers())
|
||||||
|
if p.device.type == device and n != "buffer2"
|
||||||
)
|
)
|
||||||
|
|
||||||
# Check that the model's modules have been patched with CustomLinear layers.
|
# Check that the model's modules have been patched with CustomLinear layers.
|
||||||
assert type(model.linear1) is CustomLinear
|
assert type(model.linear1) is CustomLinear
|
||||||
assert type(model.linear2) is CustomLinear
|
assert type(model.linear2) is CustomLinear
|
||||||
|
Loading…
Reference in New Issue
Block a user