mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-04-04 22:43:40 +08:00
Minor cleanup and documentation updates.
This commit is contained in:
parent
ae41651346
commit
61d3d566de
@ -40,7 +40,7 @@ class FluxLoRALoaderInvocation(BaseInvocation):
|
||||
raise ValueError(f"Unknown lora: {lora_key}!")
|
||||
|
||||
if any(lora.lora.key == lora_key for lora in self.transformer.loras):
|
||||
raise Exception(f'LoRA "{lora_key}" already applied to transformer.')
|
||||
raise ValueError(f'LoRA "{lora_key}" already applied to transformer.')
|
||||
|
||||
transformer = self.transformer.model_copy(deep=True)
|
||||
transformer.loras.append(
|
||||
|
@ -30,7 +30,7 @@ def is_state_dict_likely_in_flux_diffusers_format(state_dict: Dict[str, torch.Te
|
||||
return all_keys_in_peft_format and all_expected_keys_present
|
||||
|
||||
|
||||
def lora_model_from_flux_diffusers_state_dict(state_dict: Dict[str, torch.Tensor], alpha: float) -> LoRAModelRaw: # pyright: ignore[reportRedeclaration] (state_dict is intentionally re-declared)
|
||||
def lora_model_from_flux_diffusers_state_dict(state_dict: Dict[str, torch.Tensor], alpha: float) -> LoRAModelRaw:
|
||||
"""Loads a state dict in the Diffusers FLUX LoRA format into a LoRAModelRaw object.
|
||||
|
||||
This function is based on:
|
||||
|
@ -41,6 +41,3 @@ class ConcatenatedLoRALayer(LoRALayerBase):
|
||||
|
||||
assert len(layer_biases) == len(self.lora_layers)
|
||||
return torch.cat(layer_biases, dim=self.concat_axis)
|
||||
|
||||
def calc_size(self) -> int:
|
||||
return sum(lora_layer.calc_size() for lora_layer in self.lora_layers)
|
||||
|
@ -28,11 +28,14 @@ class LoRAPatcher:
|
||||
):
|
||||
"""Apply one or more LoRA patches to a model within a context manager.
|
||||
|
||||
:param model: The model to patch.
|
||||
:param loras: An iterator that returns tuples of LoRA patches and associated weights. An iterator is used so
|
||||
that the LoRA patches do not need to be loaded into memory all at once.
|
||||
:param prefix: The keys in the patches will be filtered to only include weights with this prefix.
|
||||
:cached_weights: Read-only copy of the model's state dict in CPU, for efficient unpatching purposes.
|
||||
Args:
|
||||
model (torch.nn.Module): The model to patch.
|
||||
patches (Iterable[Tuple[LoRAModelRaw, float]]): An iterator that returns tuples of LoRA patches and
|
||||
associated weights. An iterator is used so that the LoRA patches do not need to be loaded into memory
|
||||
all at once.
|
||||
prefix (str): The keys in the patches will be filtered to only include weights with this prefix.
|
||||
cached_weights (Optional[Dict[str, torch.Tensor]], optional): Read-only copy of the model's state dict in
|
||||
CPU RAM, for efficient unpatching purposes.
|
||||
"""
|
||||
original_weights = OriginalWeightsStorage(cached_weights)
|
||||
try:
|
||||
@ -60,15 +63,15 @@ class LoRAPatcher:
|
||||
patch_weight: float,
|
||||
original_weights: OriginalWeightsStorage,
|
||||
):
|
||||
"""
|
||||
Apply a single LoRA patch to a model.
|
||||
:param model: The model to patch.
|
||||
:param patch: LoRA model to patch in.
|
||||
:param patch_weight: LoRA patch weight.
|
||||
:param prefix: A string prefix that precedes keys used in the LoRAs weight layers.
|
||||
:param original_weights: Storage with original weights, filled by weights which lora patches, used for unpatching.
|
||||
"""
|
||||
"""Apply a single LoRA patch to a model.
|
||||
|
||||
Args:
|
||||
model (torch.nn.Module): The model to patch.
|
||||
prefix (str): A string prefix that precedes keys used in the LoRAs weight layers.
|
||||
patch (LoRAModelRaw): The LoRA model to patch in.
|
||||
patch_weight (float): The weight of the LoRA patch.
|
||||
original_weights (OriginalWeightsStorage): Storage for the original weights of the model, for unpatching.
|
||||
"""
|
||||
if patch_weight == 0:
|
||||
return
|
||||
|
||||
@ -126,6 +129,17 @@ class LoRAPatcher:
|
||||
patches: Iterable[Tuple[LoRAModelRaw, float]],
|
||||
prefix: str,
|
||||
):
|
||||
"""Apply one or more LoRA sidecar patches to a model within a context manager. Sidecar patches incur some
|
||||
overhead compared to normal LoRA patching, but they allow for LoRA layers to applied to base layers in any
|
||||
quantization format.
|
||||
|
||||
Args:
|
||||
model (torch.nn.Module): The model to patch.
|
||||
patches (Iterable[Tuple[LoRAModelRaw, float]]): An iterator that returns tuples of LoRA patches and
|
||||
associated weights. An iterator is used so that the LoRA patches do not need to be loaded into memory
|
||||
all at once.
|
||||
prefix (str): The keys in the patches will be filtered to only include weights with this prefix.
|
||||
"""
|
||||
original_modules: dict[str, torch.nn.Module] = {}
|
||||
try:
|
||||
for patch, patch_weight in patches:
|
||||
@ -136,7 +150,6 @@ class LoRAPatcher:
|
||||
patch_weight=patch_weight,
|
||||
original_modules=original_modules,
|
||||
)
|
||||
|
||||
yield
|
||||
finally:
|
||||
# Restore original modules.
|
||||
@ -154,6 +167,8 @@ class LoRAPatcher:
|
||||
prefix: str,
|
||||
original_modules: dict[str, torch.nn.Module],
|
||||
):
|
||||
"""Apply a single LoRA sidecar patch to a model."""
|
||||
|
||||
if patch_weight == 0:
|
||||
return
|
||||
|
||||
@ -178,8 +193,8 @@ class LoRAPatcher:
|
||||
|
||||
# Move the LoRA sidecar layer to the same device/dtype as the orig module.
|
||||
# TODO(ryand): Experiment with moving to the device first, then casting. This could be faster.
|
||||
# HACK(ryand): Set the dtype properly here. We want to set it to the *compute* dtype of the original module.
|
||||
# In the case of quantized layers, this may be different than the weight dtype.
|
||||
# HACK(ryand): Figure out how to set the dtype properly here. We want to set it to the *compute* dtype of
|
||||
# the original module. In the case of quantized layers, this may be different than the weight dtype.
|
||||
lora_sidecar_layer.to(device=module.weight.device, dtype=torch.bfloat16)
|
||||
|
||||
if module_key in original_modules:
|
||||
@ -196,6 +211,7 @@ class LoRAPatcher:
|
||||
|
||||
@staticmethod
|
||||
def _initialize_lora_sidecar_layer(orig_layer: torch.nn.Module, lora_layer: AnyLoRALayer, patch_weight: float):
|
||||
# TODO(ryand): Add support for more original layer types and LoRA layer types.
|
||||
if isinstance(orig_layer, torch.nn.Linear):
|
||||
if isinstance(lora_layer, LoRALayer):
|
||||
return LoRALinearSidecarLayer(lora_layer=lora_layer, weight=patch_weight)
|
||||
@ -211,7 +227,7 @@ class LoRAPatcher:
|
||||
try:
|
||||
submodule_index = int(module_name)
|
||||
# If the module name is an integer, then we use the __setitem__ method to set the submodule.
|
||||
parent_module[submodule_index] = submodule
|
||||
parent_module[submodule_index] = submodule # type: ignore
|
||||
except ValueError:
|
||||
# If the module name is not an integer, then we use the setattr method to set the submodule.
|
||||
setattr(parent_module, module_name, submodule)
|
||||
@ -221,12 +237,16 @@ class LoRAPatcher:
|
||||
model: torch.nn.Module, layer_key: str, layer_key_is_flattened: bool
|
||||
) -> tuple[str, torch.nn.Module]:
|
||||
"""Get the submodule corresponding to the given layer key.
|
||||
:param model: The model to search.
|
||||
:param layer_key: The layer key to search for.
|
||||
:param layer_key_is_flattened: Whether the layer key is flattened. If flattened, then all '.' have been replaced
|
||||
with '_'. Non-flattened keys are preferred, because they allow submodules to be accessed directly without
|
||||
searching, but some legacy code still uses flattened keys.
|
||||
:return: A tuple containing the module key and the submodule.
|
||||
|
||||
Args:
|
||||
model (torch.nn.Module): The model to search.
|
||||
layer_key (str): The layer key to search for.
|
||||
layer_key_is_flattened (bool): Whether the layer key is flattened. If flattened, then all '.' have been
|
||||
replaced with '_'. Non-flattened keys are preferred, because they allow submodules to be accessed
|
||||
directly without searching, but some legacy code still uses flattened keys.
|
||||
|
||||
Returns:
|
||||
tuple[str, torch.nn.Module]: A tuple containing the module key and the submodule.
|
||||
"""
|
||||
if not layer_key_is_flattened:
|
||||
return layer_key, model.get_submodule(layer_key)
|
||||
|
@ -2,6 +2,8 @@ import torch
|
||||
|
||||
|
||||
class LoRASidecarModule(torch.nn.Module):
|
||||
"""A LoRA sidecar module that wraps an original module and adds LoRA layers to it."""
|
||||
|
||||
def __init__(self, orig_module: torch.nn.Module, lora_layers: list[torch.nn.Module]):
|
||||
super().__init__()
|
||||
self._orig_module = orig_module
|
||||
|
Loading…
x
Reference in New Issue
Block a user