mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-01-09 04:18:46 +08:00
Merge branch 'dream-m1' of github.com:toffaletti/stable-diffusion into toffaletti-dream-m1
* Fix conflicts with main branch changes * Fix logic error in choose_autocast_device() that was causing crashes on CUDA systems.
This commit is contained in:
commit
629ca09fda
@ -52,7 +52,7 @@ dependencies:
|
||||
- -e git+https://github.com/huggingface/diffusers.git@v0.2.4#egg=diffusers
|
||||
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
||||
- -e git+https://github.com/openai/CLIP.git@main#egg=clip
|
||||
- -e git+https://github.com/lstein/k-diffusion.git@master#egg=k-diffusion
|
||||
- -e git+https://github.com/Birch-san/k-diffusion.git@mps#egg=k_diffusion
|
||||
- -e .
|
||||
variables:
|
||||
PYTORCH_ENABLE_MPS_FALLBACK: 1
|
||||
|
@ -8,4 +8,10 @@ def choose_torch_device() -> str:
|
||||
return 'mps'
|
||||
return 'cpu'
|
||||
|
||||
|
||||
def choose_autocast_device(device) -> str:
|
||||
'''Returns an autocast compatible device from a torch device'''
|
||||
device_type = device.type # this returns 'mps' on M1
|
||||
# autocast only supports cuda or cpu
|
||||
if device_type not in ('cuda','cpu'):
|
||||
return 'cpu'
|
||||
return device_type
|
||||
|
@ -8,6 +8,7 @@ import torch
|
||||
import numpy as np
|
||||
import random
|
||||
import os
|
||||
import traceback
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image
|
||||
from tqdm import tqdm, trange
|
||||
@ -28,7 +29,7 @@ from ldm.models.diffusion.plms import PLMSSampler
|
||||
from ldm.models.diffusion.ksampler import KSampler
|
||||
from ldm.dream.pngwriter import PngWriter
|
||||
from ldm.dream.image_util import InitImageResizer
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
from ldm.dream.devices import choose_autocast_device, choose_torch_device
|
||||
|
||||
"""Simplified text to image API for stable diffusion/latent diffusion
|
||||
|
||||
@ -114,26 +115,28 @@ class T2I:
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
iterations=1,
|
||||
steps=50,
|
||||
seed=None,
|
||||
cfg_scale=7.5,
|
||||
weights='models/ldm/stable-diffusion-v1/model.ckpt',
|
||||
config='configs/stable-diffusion/v1-inference.yaml',
|
||||
grid=False,
|
||||
width=512,
|
||||
height=512,
|
||||
sampler_name='k_lms',
|
||||
latent_channels=4,
|
||||
downsampling_factor=8,
|
||||
ddim_eta=0.0, # deterministic
|
||||
precision='autocast',
|
||||
full_precision=False,
|
||||
strength=0.75, # default in scripts/img2img.py
|
||||
embedding_path=None,
|
||||
# just to keep track of this parameter when regenerating prompt
|
||||
latent_diffusion_weights=False,
|
||||
self,
|
||||
iterations=1,
|
||||
steps=50,
|
||||
seed=None,
|
||||
cfg_scale=7.5,
|
||||
weights='models/ldm/stable-diffusion-v1/model.ckpt',
|
||||
config='configs/stable-diffusion/v1-inference.yaml',
|
||||
grid=False,
|
||||
width=512,
|
||||
height=512,
|
||||
sampler_name='k_lms',
|
||||
latent_channels=4,
|
||||
downsampling_factor=8,
|
||||
ddim_eta=0.0, # deterministic
|
||||
precision='autocast',
|
||||
full_precision=False,
|
||||
strength=0.75, # default in scripts/img2img.py
|
||||
embedding_path=None,
|
||||
device_type = 'cuda',
|
||||
# just to keep track of this parameter when regenerating prompt
|
||||
# needs to be replaced when new configuration system implemented.
|
||||
latent_diffusion_weights=False,
|
||||
):
|
||||
self.iterations = iterations
|
||||
self.width = width
|
||||
@ -151,11 +154,17 @@ class T2I:
|
||||
self.full_precision = full_precision
|
||||
self.strength = strength
|
||||
self.embedding_path = embedding_path
|
||||
self.device_type = device_type
|
||||
self.model = None # empty for now
|
||||
self.sampler = None
|
||||
self.device = None
|
||||
self.latent_diffusion_weights = latent_diffusion_weights
|
||||
|
||||
if device_type == 'cuda' and not torch.cuda.is_available():
|
||||
device_type = choose_torch_device()
|
||||
print(">> cuda not available, using device", device_type)
|
||||
self.device = torch.device(device_type)
|
||||
|
||||
# for VRAM usage statistics
|
||||
device_type = choose_torch_device()
|
||||
self.session_peakmem = torch.cuda.max_memory_allocated() if device_type == 'cuda' else None
|
||||
@ -312,8 +321,9 @@ class T2I:
|
||||
callback=step_callback,
|
||||
)
|
||||
|
||||
with scope(self.device.type), self.model.ema_scope():
|
||||
for n in trange(iterations, desc='>> Generating'):
|
||||
device_type = choose_autocast_device(self.device)
|
||||
with scope(device_type), self.model.ema_scope():
|
||||
for n in trange(iterations, desc='Generating'):
|
||||
seed_everything(seed)
|
||||
image = next(images_iterator)
|
||||
results.append([image, seed])
|
||||
@ -346,7 +356,7 @@ class T2I:
|
||||
)
|
||||
except Exception as e:
|
||||
print(
|
||||
f'Error running RealESRGAN - Your image was not upscaled.\n{e}'
|
||||
f'>> Error running RealESRGAN - Your image was not upscaled.\n{e}'
|
||||
)
|
||||
if image_callback is not None:
|
||||
if save_original:
|
||||
@ -359,11 +369,11 @@ class T2I:
|
||||
except KeyboardInterrupt:
|
||||
print('*interrupted*')
|
||||
print(
|
||||
'Partial results will be returned; if --grid was requested, nothing will be returned.'
|
||||
'>> Partial results will be returned; if --grid was requested, nothing will be returned.'
|
||||
)
|
||||
except RuntimeError as e:
|
||||
print(str(e))
|
||||
print('Are you sure your system has an adequate NVIDIA GPU?')
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print('>> Are you sure your system has an adequate NVIDIA GPU?')
|
||||
|
||||
toc = time.time()
|
||||
print('>> Usage stats:')
|
||||
@ -464,7 +474,6 @@ class T2I:
|
||||
)
|
||||
|
||||
t_enc = int(strength * steps)
|
||||
# print(f"target t_enc is {t_enc} steps")
|
||||
|
||||
while True:
|
||||
uc, c = self._get_uc_and_c(prompt, skip_normalize)
|
||||
@ -515,7 +524,7 @@ class T2I:
|
||||
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
if len(x_samples) != 1:
|
||||
raise Exception(
|
||||
f'expected to get a single image, but got {len(x_samples)}')
|
||||
f'>> expected to get a single image, but got {len(x_samples)}')
|
||||
x_sample = 255.0 * rearrange(
|
||||
x_samples[0].cpu().numpy(), 'c h w -> h w c'
|
||||
)
|
||||
@ -525,17 +534,12 @@ class T2I:
|
||||
self.seed = random.randrange(0, np.iinfo(np.uint32).max)
|
||||
return self.seed
|
||||
|
||||
def _get_device(self):
|
||||
device_type = choose_torch_device()
|
||||
return torch.device(device_type)
|
||||
|
||||
def load_model(self):
|
||||
"""Load and initialize the model from configuration variables passed at object creation time"""
|
||||
if self.model is None:
|
||||
seed_everything(self.seed)
|
||||
try:
|
||||
config = OmegaConf.load(self.config)
|
||||
self.device = self._get_device()
|
||||
model = self._load_model_from_config(config, self.weights)
|
||||
if self.embedding_path is not None:
|
||||
model.embedding_manager.load(
|
||||
@ -544,12 +548,10 @@ class T2I:
|
||||
self.model = model.to(self.device)
|
||||
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
|
||||
self.model.cond_stage_model.device = self.device
|
||||
except AttributeError:
|
||||
import traceback
|
||||
print(
|
||||
'Error loading model. Only the CUDA backend is supported', file=sys.stderr)
|
||||
except AttributeError as e:
|
||||
print(f'>> Error loading model. {str(e)}', file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
raise SystemExit
|
||||
raise SystemExit from e
|
||||
|
||||
self._set_sampler()
|
||||
|
||||
|
@ -9,6 +9,7 @@ import sys
|
||||
import copy
|
||||
import warnings
|
||||
import time
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
import ldm.dream.readline
|
||||
from ldm.dream.pngwriter import PngWriter, PromptFormatter
|
||||
from ldm.dream.server import DreamServer, ThreadingDreamServer
|
||||
@ -60,6 +61,7 @@ def main():
|
||||
# this is solely for recreating the prompt
|
||||
latent_diffusion_weights=opt.laion400m,
|
||||
embedding_path=opt.embedding_path,
|
||||
device_type=opt.device
|
||||
)
|
||||
|
||||
# make sure the output directory exists
|
||||
@ -346,6 +348,8 @@ def create_argv_parser():
|
||||
dest='full_precision',
|
||||
action='store_true',
|
||||
help='Use slower full precision math for calculations',
|
||||
# MPS only functions with full precision, see https://github.com/lstein/stable-diffusion/issues/237
|
||||
default=choose_torch_device() == 'mps',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-g',
|
||||
@ -418,6 +422,13 @@ def create_argv_parser():
|
||||
default='model',
|
||||
help='Indicates the Stable Diffusion model to use.',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--device',
|
||||
'-d',
|
||||
type=str,
|
||||
default='cuda',
|
||||
help="device to run stable diffusion on. defaults to cuda `torch.cuda.current_device()` if available"
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user