mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-01-07 03:17:05 +08:00
Create CachedModelOnlyFullLoad class.
This commit is contained in:
parent
91c5af1b95
commit
987393853c
@ -0,0 +1,69 @@
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class CachedModelOnlyFullLoad:
|
||||
"""A wrapper around a PyTorch model to handle full loads and unloads between the CPU and the compute device.
|
||||
|
||||
Note: "VRAM" is used throughout this class to refer to the memory on the compute device. It could be CUDA memory,
|
||||
MPS memory, etc.
|
||||
"""
|
||||
|
||||
def __init__(self, model: torch.nn.Module | Any, compute_device: torch.device, total_bytes: int):
|
||||
"""Initialize a CachedModelOnlyFullLoad.
|
||||
|
||||
Args:
|
||||
model (torch.nn.Module | Any): The model to wrap. Should be on the CPU.
|
||||
compute_device (torch.device): The compute device to move the model to.
|
||||
total_bytes (int): The total size (in bytes) of all the weights in the model.
|
||||
"""
|
||||
# model is often a torch.nn.Module, but could be any model type. Throughout this class, we handle both cases.
|
||||
self._model = model
|
||||
self._compute_device = compute_device
|
||||
self._total_bytes = total_bytes
|
||||
self._is_in_vram = False
|
||||
|
||||
@property
|
||||
def model(self) -> torch.nn.Module:
|
||||
return self._model
|
||||
|
||||
def total_bytes(self) -> int:
|
||||
"""Get the total size (in bytes) of all the weights in the model."""
|
||||
return self._total_bytes
|
||||
|
||||
def is_in_vram(self) -> bool:
|
||||
"""Return true if the model is currently in VRAM."""
|
||||
return self._is_in_vram
|
||||
|
||||
def full_load_to_vram(self) -> int:
|
||||
"""Load all weights into VRAM (if supported by the model).
|
||||
|
||||
Returns:
|
||||
The number of bytes loaded into VRAM.
|
||||
"""
|
||||
if self._is_in_vram:
|
||||
# Already in VRAM.
|
||||
return 0
|
||||
|
||||
if not hasattr(self._model, "to"):
|
||||
# Model doesn't support moving to a device.
|
||||
return 0
|
||||
|
||||
self._model.to(self._compute_device)
|
||||
self._is_in_vram = True
|
||||
return self._total_bytes
|
||||
|
||||
def full_unload_from_vram(self) -> int:
|
||||
"""Unload all weights from VRAM.
|
||||
|
||||
Returns:
|
||||
The number of bytes unloaded from VRAM.
|
||||
"""
|
||||
if not self._is_in_vram:
|
||||
# Already in RAM.
|
||||
return 0
|
||||
|
||||
self._model.to("cpu")
|
||||
self._is_in_vram = False
|
||||
return self._total_bytes
|
@ -0,0 +1,13 @@
|
||||
import torch
|
||||
|
||||
|
||||
class DummyModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.linear1 = torch.nn.Linear(10, 10)
|
||||
self.linear2 = torch.nn.Linear(10, 10)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.linear1(x)
|
||||
x = self.linear2(x)
|
||||
return x
|
@ -0,0 +1,50 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_only_full_load import (
|
||||
CachedModelOnlyFullLoad,
|
||||
)
|
||||
from tests.backend.model_manager.load.model_cache.cached_model.dummy_module import DummyModule
|
||||
|
||||
parameterize_mps_and_cuda = pytest.mark.parametrize(
|
||||
("device"),
|
||||
[
|
||||
pytest.param(
|
||||
"mps", marks=pytest.mark.skipif(not torch.backends.mps.is_available(), reason="MPS is not available.")
|
||||
),
|
||||
pytest.param("cuda", marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is not available.")),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@parameterize_mps_and_cuda
|
||||
def test_cached_model_total_bytes(device: str):
|
||||
model = DummyModule()
|
||||
cached_model = CachedModelOnlyFullLoad(model=model, compute_device=torch.device(device), total_bytes=100)
|
||||
assert cached_model.total_bytes() == 100
|
||||
|
||||
|
||||
@parameterize_mps_and_cuda
|
||||
def test_cached_model_is_in_vram(device: str):
|
||||
model = DummyModule()
|
||||
cached_model = CachedModelOnlyFullLoad(model=model, compute_device=torch.device(device), total_bytes=100)
|
||||
assert not cached_model.is_in_vram()
|
||||
|
||||
cached_model.full_load_to_vram()
|
||||
assert cached_model.is_in_vram()
|
||||
|
||||
cached_model.full_unload_from_vram()
|
||||
assert not cached_model.is_in_vram()
|
||||
|
||||
|
||||
@parameterize_mps_and_cuda
|
||||
def test_cached_model_full_load_and_unload(device: str):
|
||||
model = DummyModule()
|
||||
cached_model = CachedModelOnlyFullLoad(model=model, compute_device=torch.device(device), total_bytes=100)
|
||||
assert cached_model.full_load_to_vram() == 100
|
||||
assert cached_model.is_in_vram()
|
||||
assert all(p.device.type == device for p in cached_model.model.parameters())
|
||||
|
||||
assert cached_model.full_unload_from_vram() == 100
|
||||
assert not cached_model.is_in_vram()
|
||||
assert all(p.device.type == "cpu" for p in cached_model.model.parameters())
|
@ -0,0 +1,72 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_with_partial_load import (
|
||||
CachedModelWithPartialLoad,
|
||||
)
|
||||
from tests.backend.model_manager.load.model_cache.cached_model.dummy_module import DummyModule
|
||||
|
||||
parameterize_mps_and_cuda = pytest.mark.parametrize(
|
||||
("device"),
|
||||
[
|
||||
pytest.param(
|
||||
"mps", marks=pytest.mark.skipif(not torch.backends.mps.is_available(), reason="MPS is not available.")
|
||||
),
|
||||
pytest.param("cuda", marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is not available.")),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@parameterize_mps_and_cuda
|
||||
def test_cached_model_total_bytes(device: str):
|
||||
if device == "cuda" and not torch.cuda.is_available():
|
||||
pytest.skip("CUDA is not available.")
|
||||
if device == "mps" and not torch.backends.mps.is_available():
|
||||
pytest.skip("MPS is not available.")
|
||||
|
||||
model = DummyModule()
|
||||
cached_model = CachedModelWithPartialLoad(model=model, compute_device=torch.device(device))
|
||||
linear_numel = 10 * 10 + 10
|
||||
assert cached_model.total_bytes() == linear_numel * 4 * 2
|
||||
|
||||
cached_model.model.to(dtype=torch.float16)
|
||||
assert cached_model.total_bytes() == linear_numel * 2 * 2
|
||||
|
||||
|
||||
@parameterize_mps_and_cuda
|
||||
def test_cached_model_cur_vram_bytes(device: str):
|
||||
model = DummyModule()
|
||||
cached_model = CachedModelWithPartialLoad(model=model, compute_device=torch.device(device))
|
||||
assert cached_model.cur_vram_bytes() == 0
|
||||
|
||||
cached_model.model.to(device=torch.device(device))
|
||||
assert cached_model.cur_vram_bytes() == cached_model.total_bytes()
|
||||
|
||||
|
||||
@parameterize_mps_and_cuda
|
||||
def test_cached_model_partial_load(device: str):
|
||||
model = DummyModule()
|
||||
cached_model = CachedModelWithPartialLoad(model=model, compute_device=torch.device(device))
|
||||
model_total_bytes = cached_model.total_bytes()
|
||||
assert cached_model.cur_vram_bytes() == 0
|
||||
|
||||
target_vram_bytes = int(model_total_bytes * 0.6)
|
||||
loaded_bytes = cached_model.partial_load_to_vram(target_vram_bytes)
|
||||
assert loaded_bytes > 0
|
||||
assert loaded_bytes < model_total_bytes
|
||||
assert loaded_bytes == cached_model.cur_vram_bytes()
|
||||
|
||||
|
||||
@parameterize_mps_and_cuda
|
||||
def test_cached_model_partial_unload(device: str):
|
||||
model = DummyModule()
|
||||
model.to(device=torch.device(device))
|
||||
cached_model = CachedModelWithPartialLoad(model=model, compute_device=torch.device(device))
|
||||
model_total_bytes = cached_model.total_bytes()
|
||||
assert cached_model.cur_vram_bytes() == model_total_bytes
|
||||
|
||||
bytes_to_free = int(model_total_bytes * 0.4)
|
||||
freed_bytes = cached_model.partial_unload_from_vram(bytes_to_free)
|
||||
assert freed_bytes >= bytes_to_free
|
||||
assert freed_bytes < model_total_bytes
|
||||
assert freed_bytes == model_total_bytes - cached_model.cur_vram_bytes()
|
Loading…
Reference in New Issue
Block a user