feat(nodes): add DepthAnythingDepthEstimationInvocation

Similar to the existing node, but without any resizing and with a revised model loading API.
This commit is contained in:
psychedelicious 2024-09-10 20:56:06 +10:00 committed by Kent Keirsey
parent 059d57f447
commit ac9950bdbb
2 changed files with 55 additions and 0 deletions

View File

@ -0,0 +1,45 @@
from typing import Literal
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small", "small_v2"]
# DepthAnything V2 Small model is licensed under Apache 2.0 but not the base and large models.
DEPTH_ANYTHING_MODELS = {
"large": "LiheYoung/depth-anything-large-hf",
"base": "LiheYoung/depth-anything-base-hf",
"small": "LiheYoung/depth-anything-small-hf",
"small_v2": "depth-anything/Depth-Anything-V2-Small-hf",
}
@invocation(
"depth_anything_depth_estimation",
title="Depth Anything Depth Estimation",
tags=["controlnet", "depth", "depth anything"],
category="controlnet",
version="1.0.0",
)
class DepthAnythingDepthEstimationInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates a depth map using a Depth Anything model."""
image: ImageField = InputField(description="The image to process")
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
default="small_v2", description="The size of the depth model to use"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
model_url = DEPTH_ANYTHING_MODELS[self.model_size]
image = context.images.get_pil(self.image.image_name, "RGB")
loaded_model = context.models.load_remote_model(model_url, DepthAnythingPipeline.load_model)
with loaded_model as depth_anything_detector:
assert isinstance(depth_anything_detector, DepthAnythingPipeline)
depth_map = depth_anything_detector.generate_depth(image)
image_dto = context.images.save(image=depth_map)
return ImageOutput.build(image_dto)

View File

@ -1,7 +1,9 @@
import pathlib
from typing import Optional
import torch
from PIL import Image
from transformers import pipeline
from transformers.pipelines import DepthEstimationPipeline
from invokeai.backend.raw_model import RawModel
@ -29,3 +31,11 @@ class DepthAnythingPipeline(RawModel):
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._pipeline.model)
@classmethod
def load_model(cls, model_path: pathlib.Path):
"""Load the model from the given path and return a DepthAnythingPipeline instance."""
depth_anything_pipeline = pipeline(model=str(model_path), task="depth-estimation", local_files_only=True)
assert isinstance(depth_anything_pipeline, DepthEstimationPipeline)
return cls(depth_anything_pipeline)