feat(nodes): add CannyEdgeDetectionInvocation

Similar to the existing node, but without the resolution fields.
This commit is contained in:
psychedelicious 2024-09-10 20:54:40 +10:00 committed by Kent Keirsey
parent 301739c4a8
commit aeaeec9b9d

View File

@ -0,0 +1,34 @@
import cv2
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.util import cv2_to_pil, pil_to_cv2
@invocation(
"canny_edge_detection",
title="Canny Edge Detection",
tags=["controlnet", "canny"],
category="controlnet",
version="1.0.0",
)
class CannyEdgeDetectionInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Geneartes an edge map using a cv2's Canny algorithm."""
image: ImageField = InputField(description="The image to process")
low_threshold: int = InputField(
default=100, ge=0, le=255, description="The low threshold of the Canny pixel gradient (0-255)"
)
high_threshold: int = InputField(
default=200, ge=0, le=255, description="The high threshold of the Canny pixel gradient (0-255)"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, "RGB")
np_img = pil_to_cv2(image)
edge_map = cv2.Canny(np_img, self.low_threshold, self.high_threshold)
edge_map_pil = cv2_to_pil(edge_map)
image_dto = context.images.save(image=edge_map_pil)
return ImageOutput.build(image_dto)