first attempt to fold k_lms changes proposed by hwharrison and bmaltais

This commit is contained in:
Lincoln Stein 2022-08-21 17:09:00 -04:00
parent d340afc9e5
commit bb91ca0462
2 changed files with 72 additions and 4 deletions

View File

@ -0,0 +1,64 @@
'''wrapper around part of Karen Crownson's k-duffsion library, making it call compatible with other Samplers'''
import k_diffusion as K
import torch.nn as nn
class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
return uncond + (cond - uncond) * cond_scale
class KSampler(object):
def __init__(self,model,schedule="lms", **kwargs):
super().__init__()
self.model = K.external.CompVisDenoiser(model)
self.accelerator = accelerate.Accelerator()
self.device = accelerator.device
self.schedule = schedule
# most of these arguments are ignored and are only present for compatibility with
# other samples
@torch.no_grad()
def sample(self,
S,
batch_size,
shape,
conditioning=None,
callback=None,
normals_sequence=None,
img_callback=None,
quantize_x0=False,
eta=0.,
mask=None,
x0=None,
temperature=1.,
noise_dropout=0.,
score_corrector=None,
corrector_kwargs=None,
verbose=True,
x_T=None,
log_every_t=100,
unconditional_guidance_scale=1.,
unconditional_conditioning=None,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
**kwargs
):
sigmas = self.model.get_sigmas(S)
if x_T:
x = x_T
else:
x = torch.randn([batch_size, *shape], device=device) * sigmas[0] # for GPU draw
model_wrap_cfg = CFGDenoiser(self.model)
extra_args = {'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}
return (K.sampling.sample_lms(model_wrap_cfg, x, sigmas, extra_args=extra_args, disable=not accelerator.is_main_process),
None)
def gather(samples_ddim):
return self.accelerator.gather(samples_ddim)

View File

@ -11,7 +11,7 @@ t2i = T2I(outdir = <path> // outputs/txt2img-samples
batch_size = <integer> // how many images to generate per sampling (1)
steps = <integer> // 50
seed = <integer> // current system time
sampler = ['ddim','plms'] // ddim
sampler = ['ddim','plms','klms'] // klms
grid = <boolean> // false
width = <integer> // image width, multiple of 64 (512)
height = <integer> // image height, multiple of 64 (512)
@ -62,8 +62,9 @@ import time
import math
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ksampler import KSampler
class T2I:
"""T2I class
@ -101,7 +102,7 @@ class T2I:
cfg_scale=7.5,
weights="models/ldm/stable-diffusion-v1/model.ckpt",
config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml",
sampler="plms",
sampler="klms",
latent_channels=4,
downsampling_factor=8,
ddim_eta=0.0, # deterministic
@ -387,6 +388,9 @@ class T2I:
elif self.sampler_name == 'ddim':
print("setting sampler to ddim")
self.sampler = DDIMSampler(self.model)
elif self.sampler_name == 'klms':
print("setting sampler to klms")
self.sampler = KSampler(self.model,'lms')
else:
print(f"unsupported sampler {self.sampler_name}, defaulting to plms")
self.sampler = PLMSSampler(self.model)