feat(nodes): add LineartEdgeDetectionInvocation

Similar to the existing node, but without any resizing and with a revised model loading API that uses the model manager.
This commit is contained in:
psychedelicious 2024-09-10 20:57:35 +10:00 committed by Kent Keirsey
parent cd2c2a7fde
commit c5f3297841
2 changed files with 97 additions and 0 deletions

View File

@ -0,0 +1,34 @@
from builtins import bool
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.lineart import Generator, LineartEdgeDetector
@invocation(
"lineart_edge_detection",
title="Lineart Edge Detection",
tags=["controlnet", "lineart"],
category="controlnet",
version="1.0.0",
)
class LineartEdgeDetectionInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an edge map using the Lineart model."""
image: ImageField = InputField(description="The image to process")
coarse: bool = InputField(default=False, description="Whether to use coarse mode")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, "RGB")
model_url = LineartEdgeDetector.get_model_url(self.coarse)
loaded_model = context.models.load_remote_model(model_url, LineartEdgeDetector.load_model)
with loaded_model as model:
assert isinstance(model, Generator)
detector = LineartEdgeDetector(model)
edge_map = detector.run(image=image)
image_dto = context.images.save(image=edge_map)
return ImageOutput.build(image_dto)

View File

@ -1,6 +1,9 @@
"""Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license)."""
import pathlib
import cv2
import huggingface_hub
import numpy as np
import torch
import torch.nn as nn
@ -156,3 +159,63 @@ class LineartProcessor:
detected_map = 255 - detected_map
return np_to_pil(detected_map)
class LineartEdgeDetector:
"""Simple wrapper around the fine and coarse lineart models for detecting edges in an image."""
hf_repo_id = "lllyasviel/Annotators"
hf_filename_fine = "sk_model.pth"
hf_filename_coarse = "sk_model2.pth"
@classmethod
def get_model_url(cls, coarse: bool = False) -> str:
"""Get the URL to download the model from the Hugging Face Hub."""
if coarse:
return huggingface_hub.hf_hub_url(cls.hf_repo_id, cls.hf_filename_coarse)
else:
return huggingface_hub.hf_hub_url(cls.hf_repo_id, cls.hf_filename_fine)
@classmethod
def load_model(cls, model_path: pathlib.Path) -> Generator:
"""Load the model from a file."""
model = Generator(3, 1, 3)
model.load_state_dict(torch.load(model_path, map_location="cpu"))
model.float().eval()
return model
def __init__(self, model: Generator) -> None:
self.model = model
def to(self, device: torch.device):
self.model.to(device)
return self
def run(self, image: Image.Image) -> Image.Image:
"""Detects edges in the input image with the selected lineart model.
Args:
input: The input image.
coarse: Whether to use the coarse model.
Returns:
The detected edges.
"""
device = next(iter(self.model.parameters())).device
np_image = pil_to_np(image)
with torch.no_grad():
np_image = torch.from_numpy(np_image).float().to(device)
np_image = np_image / 255.0
np_image = rearrange(np_image, "h w c -> 1 c h w")
line = self.model(np_image)[0][0]
line = line.cpu().numpy()
line = (line * 255.0).clip(0, 255).astype(np.uint8)
detected_map = line
detected_map = 255 - detected_map
return np_to_pil(detected_map)