mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-04-03 23:41:37 +08:00
Extract ModelOnDisk to its own module
This commit is contained in:
parent
0d75c99476
commit
c619348f29
@ -30,15 +30,13 @@ from inspect import isabstract
|
||||
from pathlib import Path
|
||||
from typing import ClassVar, Literal, Optional, TypeAlias, Union
|
||||
|
||||
import safetensors.torch
|
||||
import torch
|
||||
from picklescan.scanner import scan_file_path
|
||||
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
|
||||
from typing_extensions import Annotated, Any, Dict
|
||||
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.backend.model_hash.hash_validator import validate_hash
|
||||
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS, ModelHash
|
||||
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS
|
||||
from invokeai.backend.model_manager.model_on_disk import ModelOnDisk
|
||||
from invokeai.backend.model_manager.taxonomy import (
|
||||
AnyVariant,
|
||||
BaseModelType,
|
||||
@ -53,9 +51,7 @@ from invokeai.backend.model_manager.taxonomy import (
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.util.model_util import lora_token_vector_length
|
||||
from invokeai.backend.quantization.gguf.loaders import gguf_sd_loader
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -69,11 +65,6 @@ class InvalidModelConfigException(Exception):
|
||||
DEFAULTS_PRECISION = Literal["fp16", "fp32"]
|
||||
|
||||
|
||||
class FSLayout(Enum):
|
||||
FILE = "file"
|
||||
DIRECTORY = "directory"
|
||||
|
||||
|
||||
class SubmodelDefinition(BaseModel):
|
||||
path_or_prefix: str
|
||||
model_type: ModelType
|
||||
@ -104,90 +95,6 @@ class ControlAdapterDefaultSettings(BaseModel):
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
|
||||
|
||||
StateDict: TypeAlias = dict[str | int, Any]
|
||||
|
||||
|
||||
class ModelOnDisk:
|
||||
"""A utility class representing a model stored on disk."""
|
||||
|
||||
def __init__(self, path: Path, hash_algo: HASHING_ALGORITHMS = "blake3_single"):
|
||||
self.path = path
|
||||
self.layout = FSLayout.DIRECTORY if path.is_dir() else FSLayout.FILE
|
||||
if self.path.suffix in {".safetensors", ".bin", ".pt", ".ckpt"}:
|
||||
self.name = path.stem
|
||||
else:
|
||||
self.name = path.name
|
||||
self.hash_algo = hash_algo
|
||||
self.cache = {}
|
||||
self._state_dict_cache = {}
|
||||
|
||||
def hash(self) -> str:
|
||||
return ModelHash(algorithm=self.hash_algo).hash(self.path)
|
||||
|
||||
def size(self) -> int:
|
||||
if self.layout == FSLayout.FILE:
|
||||
return self.path.stat().st_size
|
||||
return sum(file.stat().st_size for file in self.path.rglob("*"))
|
||||
|
||||
def component_paths(self) -> set[Path]:
|
||||
if self.layout == FSLayout.FILE:
|
||||
return {self.path}
|
||||
extensions = {".safetensors", ".pt", ".pth", ".ckpt", ".bin", ".gguf"}
|
||||
return {f for f in self.path.rglob("*") if f.suffix in extensions}
|
||||
|
||||
def repo_variant(self) -> Optional[ModelRepoVariant]:
|
||||
if self.layout == FSLayout.FILE:
|
||||
return None
|
||||
|
||||
weight_files = list(self.path.glob("**/*.safetensors"))
|
||||
weight_files.extend(list(self.path.glob("**/*.bin")))
|
||||
for x in weight_files:
|
||||
if ".fp16" in x.suffixes:
|
||||
return ModelRepoVariant.FP16
|
||||
if "openvino_model" in x.name:
|
||||
return ModelRepoVariant.OpenVINO
|
||||
if "flax_model" in x.name:
|
||||
return ModelRepoVariant.Flax
|
||||
if x.suffix == ".onnx":
|
||||
return ModelRepoVariant.ONNX
|
||||
return ModelRepoVariant.Default
|
||||
|
||||
def load_state_dict(self, path: Optional[Path] = None) -> StateDict:
|
||||
if path in self._state_dict_cache:
|
||||
return self._state_dict_cache[path]
|
||||
|
||||
if not path:
|
||||
components = list(self.component_paths())
|
||||
match components:
|
||||
case []:
|
||||
raise ValueError("No weight files found for this model")
|
||||
case [p]:
|
||||
path = p
|
||||
case ps if len(ps) >= 2:
|
||||
raise ValueError(
|
||||
f"Multiple weight files found for this model: {ps}. "
|
||||
f"Please specify the intended file using the 'path' argument"
|
||||
)
|
||||
|
||||
with SilenceWarnings():
|
||||
if path.suffix.endswith((".ckpt", ".pt", ".pth", ".bin")):
|
||||
scan_result = scan_file_path(path)
|
||||
if scan_result.infected_files != 0 or scan_result.scan_err:
|
||||
raise RuntimeError(f"The model {path.stem} is potentially infected by malware. Aborting import.")
|
||||
checkpoint = torch.load(path, map_location="cpu")
|
||||
assert isinstance(checkpoint, dict)
|
||||
elif path.suffix.endswith(".gguf"):
|
||||
checkpoint = gguf_sd_loader(path, compute_dtype=torch.float32)
|
||||
elif path.suffix.endswith(".safetensors"):
|
||||
checkpoint = safetensors.torch.load_file(path)
|
||||
else:
|
||||
raise ValueError(f"Unrecognized model extension: {path.suffix}")
|
||||
|
||||
state_dict = checkpoint.get("state_dict", checkpoint)
|
||||
self._state_dict_cache[path] = state_dict
|
||||
return state_dict
|
||||
|
||||
|
||||
class MatchSpeed(int, Enum):
|
||||
"""Represents the estimated runtime speed of a config's 'matches' method."""
|
||||
|
||||
@ -429,7 +336,7 @@ class LoRALyCORISConfig(LoRAConfigBase, ModelConfigBase):
|
||||
|
||||
@classmethod
|
||||
def matches(cls, mod: ModelOnDisk) -> bool:
|
||||
if mod.layout == FSLayout.DIRECTORY:
|
||||
if mod.path.is_dir():
|
||||
return False
|
||||
|
||||
# Avoid false positive match against ControlLoRA and Diffusers
|
||||
@ -483,7 +390,7 @@ class LoRADiffusersConfig(LoRAConfigBase, ModelConfigBase):
|
||||
|
||||
@classmethod
|
||||
def matches(cls, mod: ModelOnDisk) -> bool:
|
||||
if mod.layout == FSLayout.FILE:
|
||||
if mod.path.is_file():
|
||||
return cls.flux_lora_format(mod) == FluxLoRAFormat.Diffusers
|
||||
|
||||
suffixes = ["bin", "safetensors"]
|
||||
@ -667,7 +574,7 @@ class LlavaOnevisionConfig(DiffusersConfigBase, ModelConfigBase):
|
||||
|
||||
@classmethod
|
||||
def matches(cls, mod: ModelOnDisk) -> bool:
|
||||
if mod.layout == FSLayout.FILE:
|
||||
if mod.path.is_file():
|
||||
return False
|
||||
|
||||
config_path = mod.path / "config.json"
|
||||
|
93
invokeai/backend/model_manager/model_on_disk.py
Normal file
93
invokeai/backend/model_manager/model_on_disk.py
Normal file
@ -0,0 +1,93 @@
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional, TypeAlias
|
||||
|
||||
import safetensors.torch
|
||||
import torch
|
||||
from picklescan.scanner import scan_file_path
|
||||
|
||||
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS, ModelHash
|
||||
from invokeai.backend.model_manager.taxonomy import ModelRepoVariant
|
||||
from invokeai.backend.quantization.gguf.loaders import gguf_sd_loader
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
StateDict: TypeAlias = dict[str | int, Any]
|
||||
|
||||
|
||||
class ModelOnDisk:
|
||||
"""A utility class representing a model stored on disk."""
|
||||
|
||||
def __init__(self, path: Path, hash_algo: HASHING_ALGORITHMS = "blake3_single"):
|
||||
self.path = path
|
||||
if self.path.suffix in {".safetensors", ".bin", ".pt", ".ckpt"}:
|
||||
self.name = path.stem
|
||||
else:
|
||||
self.name = path.name
|
||||
self.hash_algo = hash_algo
|
||||
self.cache = {}
|
||||
self._state_dict_cache = {}
|
||||
|
||||
def hash(self) -> str:
|
||||
return ModelHash(algorithm=self.hash_algo).hash(self.path)
|
||||
|
||||
def size(self) -> int:
|
||||
if self.path.is_file():
|
||||
return self.path.stat().st_size
|
||||
return sum(file.stat().st_size for file in self.path.rglob("*"))
|
||||
|
||||
def component_paths(self) -> set[Path]:
|
||||
if self.path.is_file():
|
||||
return {self.path}
|
||||
extensions = {".safetensors", ".pt", ".pth", ".ckpt", ".bin", ".gguf"}
|
||||
return {f for f in self.path.rglob("*") if f.suffix in extensions}
|
||||
|
||||
def repo_variant(self) -> Optional[ModelRepoVariant]:
|
||||
if self.path.is_file():
|
||||
return None
|
||||
|
||||
weight_files = list(self.path.glob("**/*.safetensors"))
|
||||
weight_files.extend(list(self.path.glob("**/*.bin")))
|
||||
for x in weight_files:
|
||||
if ".fp16" in x.suffixes:
|
||||
return ModelRepoVariant.FP16
|
||||
if "openvino_model" in x.name:
|
||||
return ModelRepoVariant.OpenVINO
|
||||
if "flax_model" in x.name:
|
||||
return ModelRepoVariant.Flax
|
||||
if x.suffix == ".onnx":
|
||||
return ModelRepoVariant.ONNX
|
||||
return ModelRepoVariant.Default
|
||||
|
||||
def load_state_dict(self, path: Optional[Path] = None) -> StateDict:
|
||||
if path in self._state_dict_cache:
|
||||
return self._state_dict_cache[path]
|
||||
|
||||
if not path:
|
||||
components = list(self.component_paths())
|
||||
match components:
|
||||
case []:
|
||||
raise ValueError("No weight files found for this model")
|
||||
case [p]:
|
||||
path = p
|
||||
case ps if len(ps) >= 2:
|
||||
raise ValueError(
|
||||
f"Multiple weight files found for this model: {ps}. "
|
||||
f"Please specify the intended file using the 'path' argument"
|
||||
)
|
||||
|
||||
with SilenceWarnings():
|
||||
if path.suffix.endswith((".ckpt", ".pt", ".pth", ".bin")):
|
||||
scan_result = scan_file_path(path)
|
||||
if scan_result.infected_files != 0 or scan_result.scan_err:
|
||||
raise RuntimeError(f"The model {path.stem} is potentially infected by malware. Aborting import.")
|
||||
checkpoint = torch.load(path, map_location="cpu")
|
||||
assert isinstance(checkpoint, dict)
|
||||
elif path.suffix.endswith(".gguf"):
|
||||
checkpoint = gguf_sd_loader(path, compute_dtype=torch.float32)
|
||||
elif path.suffix.endswith(".safetensors"):
|
||||
checkpoint = safetensors.torch.load_file(path)
|
||||
else:
|
||||
raise ValueError(f"Unrecognized model extension: {path.suffix}")
|
||||
|
||||
state_dict = checkpoint.get("state_dict", checkpoint)
|
||||
self._state_dict_cache[path] = state_dict
|
||||
return state_dict
|
@ -22,7 +22,7 @@ from pathlib import Path
|
||||
import humanize
|
||||
import torch
|
||||
|
||||
from invokeai.backend.model_manager.config import FSLayout, ModelOnDisk
|
||||
from invokeai.backend.model_manager.model_on_disk import ModelOnDisk
|
||||
from invokeai.backend.model_manager.search import ModelSearch
|
||||
|
||||
|
||||
@ -62,7 +62,7 @@ def load_stripped_model(path: Path, *args, **kwargs):
|
||||
|
||||
def create_stripped_model(original_model_path: Path, stripped_model_path: Path) -> ModelOnDisk:
|
||||
original = ModelOnDisk(original_model_path)
|
||||
if original.layout == FSLayout.FILE:
|
||||
if original.path.is_file():
|
||||
shutil.copy2(original.path, stripped_model_path)
|
||||
else:
|
||||
shutil.copytree(original.path, stripped_model_path, dirs_exist_ok=True)
|
||||
|
@ -17,7 +17,6 @@ from invokeai.backend.model_manager.config import (
|
||||
MainDiffusersConfig,
|
||||
ModelConfigBase,
|
||||
ModelConfigFactory,
|
||||
ModelOnDisk,
|
||||
get_model_discriminator_value,
|
||||
)
|
||||
from invokeai.backend.model_manager.legacy_probe import (
|
||||
@ -27,6 +26,7 @@ from invokeai.backend.model_manager.legacy_probe import (
|
||||
get_default_settings_control_adapters,
|
||||
get_default_settings_main,
|
||||
)
|
||||
from invokeai.backend.model_manager.model_on_disk import ModelOnDisk
|
||||
from invokeai.backend.model_manager.search import ModelSearch
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user