mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-01-07 03:17:05 +08:00
Replace --full_precision with --precision that works even if not specified
Allowed values are 'auto', 'float32', 'autocast', 'float16'. If not specified or 'auto' a working precision is automatically selected based on the torch device. Context: #526 Deprecated --full_precision / -F Tested on both cuda and cpu by calling scripts/dream.py without arguments and checked the auto configuration worked. With --precision=auto/float32/autocast/float16 it performs as expected, either working or failing with a reasonable error. Also checked Img2Img.
This commit is contained in:
parent
30de9fcfae
commit
d176fb07cd
@ -5,8 +5,7 @@ SAMPLES_DIR=${OUT_DIR}
|
||||
python scripts/dream.py \
|
||||
--from_file ${PROMPT_FILE} \
|
||||
--outdir ${OUT_DIR} \
|
||||
--sampler plms \
|
||||
--full_precision
|
||||
--sampler plms
|
||||
|
||||
# original output by CompVis/stable-diffusion
|
||||
IMAGE1=".dev_scripts/images/v1_4_astronaut_rides_horse_plms_step50_seed42.png"
|
||||
|
4
.github/workflows/test-dream-conda.yml
vendored
4
.github/workflows/test-dream-conda.yml
vendored
@ -85,9 +85,9 @@ jobs:
|
||||
fi
|
||||
# Utterly hacky, but I don't know how else to do this
|
||||
if [[ ${{ github.ref }} == 'refs/heads/master' ]]; then
|
||||
time ${{ steps.vars.outputs.PYTHON_BIN }} scripts/dream.py --from_file tests/preflight_prompts.txt --full_precision
|
||||
time ${{ steps.vars.outputs.PYTHON_BIN }} scripts/dream.py --from_file tests/preflight_prompts.txt
|
||||
elif [[ ${{ github.ref }} == 'refs/heads/development' ]]; then
|
||||
time ${{ steps.vars.outputs.PYTHON_BIN }} scripts/dream.py --from_file tests/dev_prompts.txt --full_precision
|
||||
time ${{ steps.vars.outputs.PYTHON_BIN }} scripts/dream.py --from_file tests/dev_prompts.txt
|
||||
fi
|
||||
mkdir -p outputs/img-samples
|
||||
- name: Archive results
|
||||
|
18
README.md
18
README.md
@ -86,17 +86,14 @@ You wil need one of the following:
|
||||
|
||||
- At least 6 GB of free disk space for the machine learning model, Python, and all its dependencies.
|
||||
|
||||
> Note
|
||||
>
|
||||
> If you have an Nvidia 10xx series card (e.g. the 1080ti), please run the dream script in
|
||||
> full-precision mode as shown below.
|
||||
#### Note
|
||||
|
||||
Similarly, specify full-precision mode on Apple M1 hardware.
|
||||
|
||||
To run in full-precision mode, start `dream.py` with the `--full_precision` flag:
|
||||
Precision is auto configured based on the device. If however you encounter
|
||||
errors like 'expected type Float but found Half' or 'not implemented for Half'
|
||||
you can try starting `dream.py` with the `--precision=float32` flag:
|
||||
|
||||
```bash
|
||||
(ldm) ~/stable-diffusion$ python scripts/dream.py --full_precision
|
||||
(ldm) ~/stable-diffusion$ python scripts/dream.py --precision=float32
|
||||
```
|
||||
|
||||
### Features
|
||||
@ -125,6 +122,11 @@ To run in full-precision mode, start `dream.py` with the `--full_precision` flag
|
||||
|
||||
### Latest Changes
|
||||
|
||||
- vNEXT (TODO 2022)
|
||||
|
||||
- Deprecated `--full_precision` / `-F`. Simply omit it and `dream.py` will auto
|
||||
configure. To switch away from auto use the new flag like `--precision=float32`.
|
||||
|
||||
- v1.14 (11 September 2022)
|
||||
|
||||
- Memory optimizations for small-RAM cards. 512x512 now possible on 4 GB GPUs.
|
||||
|
@ -74,7 +74,7 @@ prompt arguments] (#list-of-prompt-arguments). Others
|
||||
| --prompt_as_dir | -p | False | Name output directories using the prompt text. |
|
||||
| --from_file <path> | | None | Read list of prompts from a file. Use "-" to read from standard input |
|
||||
| --model <modelname> | | stable-diffusion-1.4 | Loads model specified in configs/models.yaml. Currently one of "stable-diffusion-1.4" or "laion400m" |
|
||||
| --full_precision | -F | False | Run in slower full-precision mode. Needed for Macintosh M1/M2 hardware and some older video cards. |
|
||||
| --precision <pname> | | auto | Set to a specific precision. Rare but you may need to switch to 'float32' on some video cards. |
|
||||
| --web | | False | Start in web server mode |
|
||||
| --host <ip addr> | | localhost | Which network interface web server should listen on. Set to 0.0.0.0 to listen on any. |
|
||||
| --port <port> | | 9090 | Which port web server should listen for requests on. |
|
||||
|
@ -57,9 +57,7 @@ Once the model is trained, specify the trained .pt or .bin file when starting
|
||||
dream using
|
||||
|
||||
```bash
|
||||
python3 ./scripts/dream.py \
|
||||
--embedding_path /path/to/embedding.pt \
|
||||
--full_precision
|
||||
python3 ./scripts/dream.py --embedding_path /path/to/embedding.pt
|
||||
```
|
||||
|
||||
Then, to utilize your subject at the dream prompt
|
||||
|
@ -62,15 +62,12 @@ You wil need one of the following:
|
||||
|
||||
### Note
|
||||
|
||||
If you are have a Nvidia 10xx series card (e.g. the 1080ti), please run the dream script in
|
||||
full-precision mode as shown below.
|
||||
|
||||
Similarly, specify full-precision mode on Apple M1 hardware.
|
||||
|
||||
To run in full-precision mode, start `dream.py` with the `--full_precision` flag:
|
||||
Precision is auto configured based on the device. If however you encounter
|
||||
errors like 'expected type Float but found Half' or 'not implemented for Half'
|
||||
you can try starting `dream.py` with the `--precision=float32` flag:
|
||||
|
||||
```bash
|
||||
(ldm) ~/stable-diffusion$ python scripts/dream.py --full_precision
|
||||
(ldm) ~/stable-diffusion$ python scripts/dream.py --precision=float32
|
||||
```
|
||||
|
||||
## Features
|
||||
@ -98,6 +95,11 @@ To run in full-precision mode, start `dream.py` with the `--full_precision` flag
|
||||
|
||||
## Latest Changes
|
||||
|
||||
### vNEXT <small>(TODO 2022)</small>
|
||||
|
||||
- Deprecated `--full_precision` / `-F`. Simply omit it and `dream.py` will auto
|
||||
configure. To switch away from auto use the new flag like `--precision=float32`.
|
||||
|
||||
### v1.14 <small>(11 September 2022)</small>
|
||||
|
||||
- Memory optimizations for small-RAM cards. 512x512 now possible on 4 GB GPUs.
|
||||
|
@ -97,7 +97,7 @@ conda activate ldm
|
||||
python scripts/preload_models.py
|
||||
|
||||
# run SD!
|
||||
python scripts/dream.py --full_precision # half-precision requires autocast and won't work
|
||||
python scripts/dream.py
|
||||
|
||||
# or run the web interface!
|
||||
python scripts/dream.py --web
|
||||
@ -453,5 +453,3 @@ Abort trap: 6
|
||||
warnings.warn('resource_tracker: There appear to be %d '
|
||||
```
|
||||
|
||||
Macs do not support `autocast/mixed-precision`, so you need to supply
|
||||
`--full_precision` to use float32 everywhere.
|
||||
|
@ -100,6 +100,13 @@ SAMPLER_CHOICES = [
|
||||
'plms',
|
||||
]
|
||||
|
||||
PRECISION_CHOICES = [
|
||||
'auto',
|
||||
'float32',
|
||||
'autocast',
|
||||
'float16',
|
||||
]
|
||||
|
||||
# is there a way to pick this up during git commits?
|
||||
APP_ID = 'lstein/stable-diffusion'
|
||||
APP_VERSION = 'v1.15'
|
||||
@ -322,7 +329,16 @@ class Args(object):
|
||||
'--full_precision',
|
||||
dest='full_precision',
|
||||
action='store_true',
|
||||
help='Use more memory-intensive full precision math for calculations',
|
||||
help='Deprecated way to set --precision=float32',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--precision',
|
||||
dest='precision',
|
||||
type=str,
|
||||
choices=PRECISION_CHOICES,
|
||||
metavar='PRECISION',
|
||||
help=f'Set model precision. Defaults to auto selected based on device. Options: {", ".join(PRECISION_CHOICES)}',
|
||||
default='auto',
|
||||
)
|
||||
file_group.add_argument(
|
||||
'--from_file',
|
||||
|
@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from torch import autocast
|
||||
from contextlib import contextmanager, nullcontext
|
||||
from contextlib import nullcontext
|
||||
|
||||
def choose_torch_device() -> str:
|
||||
'''Convenience routine for guessing which GPU device to run model on'''
|
||||
@ -10,15 +10,18 @@ def choose_torch_device() -> str:
|
||||
return 'mps'
|
||||
return 'cpu'
|
||||
|
||||
def choose_autocast_device(device):
|
||||
'''Returns an autocast compatible device from a torch device'''
|
||||
device_type = device.type # this returns 'mps' on M1
|
||||
# autocast only for cuda, but GTX 16xx have issues with it
|
||||
if device_type == 'cuda':
|
||||
device_name = torch.cuda.get_device_name()
|
||||
if 'GeForce GTX 1660' in device_name or 'GeForce GTX 1650' in device_name:
|
||||
return device_type,nullcontext
|
||||
else:
|
||||
return device_type,autocast
|
||||
else:
|
||||
return 'cpu',nullcontext
|
||||
def choose_precision(device) -> str:
|
||||
'''Returns an appropriate precision for the given torch device'''
|
||||
if device.type == 'cuda':
|
||||
device_name = torch.cuda.get_device_name(device)
|
||||
if not ('GeForce GTX 1660' in device_name or 'GeForce GTX 1650' in device_name):
|
||||
return 'float16'
|
||||
return 'float32'
|
||||
|
||||
def choose_autocast(precision):
|
||||
'''Returns an autocast context or nullcontext for the given precision string'''
|
||||
# float16 currently requires autocast to avoid errors like:
|
||||
# 'expected scalar type Half but found Float'
|
||||
if precision == 'autocast' or precision == 'float16':
|
||||
return autocast
|
||||
return nullcontext
|
||||
|
@ -9,13 +9,14 @@ from tqdm import tqdm, trange
|
||||
from PIL import Image
|
||||
from einops import rearrange, repeat
|
||||
from pytorch_lightning import seed_everything
|
||||
from ldm.dream.devices import choose_autocast_device
|
||||
from ldm.dream.devices import choose_autocast
|
||||
|
||||
downsampling = 8
|
||||
|
||||
class Generator():
|
||||
def __init__(self,model):
|
||||
def __init__(self, model, precision):
|
||||
self.model = model
|
||||
self.precision = precision
|
||||
self.seed = None
|
||||
self.latent_channels = model.channels
|
||||
self.downsampling_factor = downsampling # BUG: should come from model or config
|
||||
@ -38,7 +39,7 @@ class Generator():
|
||||
def generate(self,prompt,init_image,width,height,iterations=1,seed=None,
|
||||
image_callback=None, step_callback=None,
|
||||
**kwargs):
|
||||
device_type,scope = choose_autocast_device(self.model.device)
|
||||
scope = choose_autocast(self.precision)
|
||||
make_image = self.get_make_image(
|
||||
prompt,
|
||||
init_image = init_image,
|
||||
@ -51,7 +52,7 @@ class Generator():
|
||||
results = []
|
||||
seed = seed if seed else self.new_seed()
|
||||
seed, initial_noise = self.generate_initial_noise(seed, width, height)
|
||||
with scope(device_type), self.model.ema_scope():
|
||||
with scope(self.model.device.type), self.model.ema_scope():
|
||||
for n in trange(iterations, desc='Generating'):
|
||||
x_T = None
|
||||
if self.variation_amount > 0:
|
||||
|
@ -11,8 +11,8 @@ from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.dream.generator.img2img import Img2Img
|
||||
|
||||
class Embiggen(Generator):
|
||||
def __init__(self,model):
|
||||
super().__init__(model)
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
self.init_latent = None
|
||||
|
||||
@torch.no_grad()
|
||||
|
@ -4,15 +4,15 @@ ldm.dream.generator.img2img descends from ldm.dream.generator
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from ldm.dream.devices import choose_autocast_device
|
||||
from ldm.dream.devices import choose_autocast
|
||||
from ldm.dream.generator.base import Generator
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
|
||||
class Img2Img(Generator):
|
||||
def __init__(self,model):
|
||||
super().__init__(model)
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
self.init_latent = None # by get_noise()
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,init_image,strength,step_callback=None,**kwargs):
|
||||
@ -32,8 +32,8 @@ class Img2Img(Generator):
|
||||
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
||||
)
|
||||
|
||||
device_type,scope = choose_autocast_device(self.model.device)
|
||||
with scope(device_type):
|
||||
scope = choose_autocast(self.precision)
|
||||
with scope(self.model.device.type):
|
||||
self.init_latent = self.model.get_first_stage_encoding(
|
||||
self.model.encode_first_stage(init_image)
|
||||
) # move to latent space
|
||||
|
@ -5,15 +5,15 @@ ldm.dream.generator.inpaint descends from ldm.dream.generator
|
||||
import torch
|
||||
import numpy as np
|
||||
from einops import rearrange, repeat
|
||||
from ldm.dream.devices import choose_autocast_device
|
||||
from ldm.dream.devices import choose_autocast
|
||||
from ldm.dream.generator.img2img import Img2Img
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
|
||||
class Inpaint(Img2Img):
|
||||
def __init__(self,model):
|
||||
def __init__(self, model, precision):
|
||||
self.init_latent = None
|
||||
super().__init__(model)
|
||||
|
||||
super().__init__(model, precision)
|
||||
|
||||
@torch.no_grad()
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,init_image,mask_image,strength,
|
||||
@ -38,8 +38,8 @@ class Inpaint(Img2Img):
|
||||
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
||||
)
|
||||
|
||||
device_type,scope = choose_autocast_device(self.model.device)
|
||||
with scope(device_type):
|
||||
scope = choose_autocast(self.precision)
|
||||
with scope(self.model.device.type):
|
||||
self.init_latent = self.model.get_first_stage_encoding(
|
||||
self.model.encode_first_stage(init_image)
|
||||
) # move to latent space
|
||||
|
@ -7,9 +7,9 @@ import numpy as np
|
||||
from ldm.dream.generator.base import Generator
|
||||
|
||||
class Txt2Img(Generator):
|
||||
def __init__(self,model):
|
||||
super().__init__(model)
|
||||
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
|
||||
@torch.no_grad()
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,width,height,step_callback=None,**kwargs):
|
||||
|
@ -29,7 +29,7 @@ from ldm.models.diffusion.plms import PLMSSampler
|
||||
from ldm.models.diffusion.ksampler import KSampler
|
||||
from ldm.dream.pngwriter import PngWriter
|
||||
from ldm.dream.image_util import InitImageResizer
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
from ldm.dream.devices import choose_torch_device, choose_precision
|
||||
from ldm.dream.conditioning import get_uc_and_c
|
||||
|
||||
def fix_func(orig):
|
||||
@ -104,7 +104,7 @@ gr = Generate(
|
||||
# these values are set once and shouldn't be changed
|
||||
conf = path to configuration file ('configs/models.yaml')
|
||||
model = symbolic name of the model in the configuration file
|
||||
full_precision = False
|
||||
precision = float precision to be used
|
||||
|
||||
# this value is sticky and maintained between generation calls
|
||||
sampler_name = ['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'] // k_lms
|
||||
@ -130,6 +130,7 @@ class Generate:
|
||||
sampler_name = 'k_lms',
|
||||
ddim_eta = 0.0, # deterministic
|
||||
full_precision = False,
|
||||
precision = 'auto',
|
||||
# these are deprecated; if present they override values in the conf file
|
||||
weights = None,
|
||||
config = None,
|
||||
@ -145,7 +146,7 @@ class Generate:
|
||||
self.cfg_scale = 7.5
|
||||
self.sampler_name = sampler_name
|
||||
self.ddim_eta = 0.0 # same seed always produces same image
|
||||
self.full_precision = True if choose_torch_device() == 'mps' else full_precision
|
||||
self.precision = precision
|
||||
self.strength = 0.75
|
||||
self.seamless = False
|
||||
self.embedding_path = embedding_path
|
||||
@ -162,6 +163,14 @@ class Generate:
|
||||
# it wasn't actually doing anything. This logic could be reinstated.
|
||||
device_type = choose_torch_device()
|
||||
self.device = torch.device(device_type)
|
||||
if full_precision:
|
||||
if self.precision != 'auto':
|
||||
raise ValueError('Remove --full_precision / -F if using --precision')
|
||||
print('Please remove deprecated --full_precision / -F')
|
||||
print('If auto config does not work you can use --precision=float32')
|
||||
self.precision = 'float32'
|
||||
if self.precision == 'auto':
|
||||
self.precision = choose_precision(self.device)
|
||||
|
||||
# for VRAM usage statistics
|
||||
self.session_peakmem = torch.cuda.max_memory_allocated() if self._has_cuda else None
|
||||
@ -440,25 +449,25 @@ class Generate:
|
||||
def _make_img2img(self):
|
||||
if not self.generators.get('img2img'):
|
||||
from ldm.dream.generator.img2img import Img2Img
|
||||
self.generators['img2img'] = Img2Img(self.model)
|
||||
self.generators['img2img'] = Img2Img(self.model, self.precision)
|
||||
return self.generators['img2img']
|
||||
|
||||
|
||||
def _make_embiggen(self):
|
||||
if not self.generators.get('embiggen'):
|
||||
from ldm.dream.generator.embiggen import Embiggen
|
||||
self.generators['embiggen'] = Embiggen(self.model)
|
||||
self.generators['embiggen'] = Embiggen(self.model, self.precision)
|
||||
return self.generators['embiggen']
|
||||
|
||||
def _make_txt2img(self):
|
||||
if not self.generators.get('txt2img'):
|
||||
from ldm.dream.generator.txt2img import Txt2Img
|
||||
self.generators['txt2img'] = Txt2Img(self.model)
|
||||
self.generators['txt2img'] = Txt2Img(self.model, self.precision)
|
||||
return self.generators['txt2img']
|
||||
|
||||
def _make_inpaint(self):
|
||||
if not self.generators.get('inpaint'):
|
||||
from ldm.dream.generator.inpaint import Inpaint
|
||||
self.generators['inpaint'] = Inpaint(self.model)
|
||||
self.generators['inpaint'] = Inpaint(self.model, self.precision)
|
||||
return self.generators['inpaint']
|
||||
|
||||
def load_model(self):
|
||||
@ -469,7 +478,7 @@ class Generate:
|
||||
model = self._load_model_from_config(self.config, self.weights)
|
||||
if self.embedding_path is not None:
|
||||
model.embedding_manager.load(
|
||||
self.embedding_path, self.full_precision
|
||||
self.embedding_path, self.precision == 'float32' or self.precision == 'autocast'
|
||||
)
|
||||
self.model = model.to(self.device)
|
||||
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
|
||||
@ -619,16 +628,13 @@ class Generate:
|
||||
sd = pl_sd['state_dict']
|
||||
model = instantiate_from_config(c.model)
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
|
||||
if self.full_precision:
|
||||
print(
|
||||
'>> Using slower but more accurate full-precision math (--full_precision)'
|
||||
)
|
||||
|
||||
if self.precision == 'float16':
|
||||
print('Using faster float16 precision')
|
||||
model.to(torch.float16)
|
||||
else:
|
||||
print(
|
||||
'>> Using half precision math. Call with --full_precision to use more accurate but VRAM-intensive full precision.'
|
||||
)
|
||||
model.half()
|
||||
print('Using more accurate float32 precision')
|
||||
|
||||
model.to(self.device)
|
||||
model.eval()
|
||||
|
||||
|
@ -54,6 +54,7 @@ def main():
|
||||
sampler_name = opt.sampler_name,
|
||||
embedding_path = opt.embedding_path,
|
||||
full_precision = opt.full_precision,
|
||||
precision = opt.precision,
|
||||
)
|
||||
except (FileNotFoundError, IOError, KeyError) as e:
|
||||
print(f'{e}. Aborting.')
|
||||
|
@ -119,7 +119,7 @@ def main():
|
||||
# "height": height,
|
||||
# "sampler_name": opt.sampler_name,
|
||||
# "weights": weights,
|
||||
# "full_precision": opt.full_precision,
|
||||
# "precision": opt.precision,
|
||||
# "config": config,
|
||||
# "grid": opt.grid,
|
||||
# "latent_diffusion_weights": opt.laion400m,
|
||||
|
@ -23,14 +23,14 @@ class Container(containers.DeclarativeContainer):
|
||||
model = config.model,
|
||||
sampler_name = config.sampler_name,
|
||||
embedding_path = config.embedding_path,
|
||||
full_precision = config.full_precision
|
||||
precision = config.precision
|
||||
# config = config.model.config,
|
||||
|
||||
# width = config.model.width,
|
||||
# height = config.model.height,
|
||||
# sampler_name = config.model.sampler_name,
|
||||
# weights = config.model.weights,
|
||||
# full_precision = config.model.full_precision,
|
||||
# precision = config.model.precision,
|
||||
# grid = config.model.grid,
|
||||
# seamless = config.model.seamless,
|
||||
# embedding_path = config.model.embedding_path,
|
||||
|
Loading…
Reference in New Issue
Block a user