import logging import pytest import torch from invokeai.backend.patches.layers.lora_layer import LoRALayer def test_lora_layer_init_from_state_dict(): """Test initializing a LoRALayer from state dict values.""" # Create mock state dict values in_features = 8 out_features = 16 rank = 4 alpha = 16.0 values = { "lora_up.weight": torch.ones(out_features, rank), "lora_down.weight": torch.ones(rank, in_features), "alpha": torch.tensor(alpha), } layer = LoRALayer.from_state_dict_values(values) assert layer.up.shape == (out_features, rank) assert layer.down.shape == (rank, in_features) assert layer._alpha == alpha assert layer.bias is None def test_lora_layer_init_from_state_dict_with_unhandled_keys_logs_warning(caplog: pytest.LogCaptureFixture): """Test initializing a LoRALayer from state dict values with an unhandled key.""" in_features = 8 out_features = 16 rank = 4 alpha = 16.0 values = { "lora_up.weight": torch.ones(out_features, rank), "lora_down.weight": torch.ones(rank, in_features), "alpha": torch.tensor(alpha), "unhandled_key": torch.randn(4, 4), } with caplog.at_level(logging.WARNING): _ = LoRALayer.from_state_dict_values(values) assert ( "Unexpected keys found in LoRA/LyCORIS layer, model might work incorrectly! Unexpected keys: {'unhandled_key'}" in caplog.text ) @pytest.mark.parametrize( ["device"], [ pytest.param("cuda", marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA device")), pytest.param( "mps", marks=pytest.mark.skipif(not torch.backends.mps.is_available(), reason="requires MPS device") ), ], ) def test_lora_layer_to(device: str): in_features = 8 out_features = 16 rank = 4 alpha = 16.0 values = { "lora_up.weight": torch.ones(out_features, rank), "lora_down.weight": torch.ones(rank, in_features), "alpha": torch.tensor(alpha), } layer = LoRALayer.from_state_dict_values(values) # Layer is initialized on the CPU. assert layer.up.device.type == "cpu" assert layer.down.device.type == "cpu" # Test moving to device. layer.to(device=torch.device(device)) assert layer.up.device.type == device assert layer.down.device.type == device def test_lora_layer_calc_size(): """Test calculating memory size of LoRALayer tensors.""" # Initialize weights with random shapes. up = torch.randn(1, 2) mid = torch.randn(2, 3) down = torch.randn(3, 4) bias = torch.randn(5) layer = LoRALayer(up=up, mid=mid, down=down, alpha=8.0, bias=bias) assert layer.calc_size() == sum(tensor.numel() * tensor.element_size() for tensor in [up, mid, down, bias]) def test_lora_layer_get_parameters(): """Test getting weight and bias parameters from LoRALayer.""" in_features = 8 out_features = 16 rank = 4 alpha = 16.0 values = { "lora_up.weight": torch.ones(out_features, rank), "lora_down.weight": torch.ones(rank, in_features), "alpha": torch.tensor(alpha), } layer = LoRALayer.from_state_dict_values(values) # Create mock original module orig_module = torch.nn.Linear(in_features, out_features) params = layer.get_parameters(dict(orig_module.named_parameters(recurse=False)), weight=1.0) assert "weight" in params assert params["weight"].shape == orig_module.weight.shape assert params["weight"].allclose(torch.ones(out_features, in_features) * alpha) assert "bias" not in params # No bias in this case