mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-01-07 03:17:05 +08:00
91 lines
3.7 KiB
Python
91 lines
3.7 KiB
Python
from pathlib import Path
|
|
|
|
import pytest
|
|
import torch
|
|
from torch import tensor
|
|
|
|
from invokeai.backend.model_manager import BaseModelType, ModelRepoVariant
|
|
from invokeai.backend.model_manager.config import InvalidModelConfigException, MainDiffusersConfig, ModelVariantType
|
|
from invokeai.backend.model_manager.probe import (
|
|
CkptType,
|
|
ModelProbe,
|
|
VaeFolderProbe,
|
|
get_default_settings_control_adapters,
|
|
get_default_settings_main,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"vae_path,expected_type",
|
|
[
|
|
("sd-vae-ft-mse", BaseModelType.StableDiffusion1),
|
|
("sdxl-vae", BaseModelType.StableDiffusionXL),
|
|
("taesd", BaseModelType.StableDiffusion1),
|
|
("taesdxl", BaseModelType.StableDiffusionXL),
|
|
],
|
|
)
|
|
def test_get_base_type(vae_path: str, expected_type: BaseModelType, datadir: Path):
|
|
sd1_vae_path = datadir / "vae" / vae_path
|
|
probe = VaeFolderProbe(sd1_vae_path)
|
|
base_type = probe.get_base_type()
|
|
assert base_type == expected_type
|
|
repo_variant = probe.get_repo_variant()
|
|
assert repo_variant == ModelRepoVariant.Default
|
|
|
|
|
|
def test_repo_variant(datadir: Path):
|
|
probe = VaeFolderProbe(datadir / "vae" / "taesdxl-fp16")
|
|
repo_variant = probe.get_repo_variant()
|
|
assert repo_variant == ModelRepoVariant.FP16
|
|
|
|
|
|
def test_controlnet_t2i_default_settings():
|
|
assert get_default_settings_control_adapters("some_canny_model").preprocessor == "canny_image_processor"
|
|
assert get_default_settings_control_adapters("some_depth_model").preprocessor == "depth_anything_image_processor"
|
|
assert get_default_settings_control_adapters("some_pose_model").preprocessor == "dw_openpose_image_processor"
|
|
assert get_default_settings_control_adapters("i like turtles") is None
|
|
|
|
|
|
def test_default_settings_main():
|
|
assert get_default_settings_main(BaseModelType.StableDiffusion1).width == 512
|
|
assert get_default_settings_main(BaseModelType.StableDiffusion1).height == 512
|
|
assert get_default_settings_main(BaseModelType.StableDiffusion2).width == 512
|
|
assert get_default_settings_main(BaseModelType.StableDiffusion2).height == 512
|
|
assert get_default_settings_main(BaseModelType.StableDiffusionXL).width == 1024
|
|
assert get_default_settings_main(BaseModelType.StableDiffusionXL).height == 1024
|
|
assert get_default_settings_main(BaseModelType.StableDiffusionXLRefiner) is None
|
|
assert get_default_settings_main(BaseModelType.Any) is None
|
|
|
|
|
|
def test_probe_handles_state_dict_with_integer_keys(tmp_path: Path):
|
|
# This structure isn't supported by invoke, but we still need to handle it gracefully.
|
|
# See https://github.com/invoke-ai/InvokeAI/issues/6044
|
|
state_dict_with_integer_keys: CkptType = {
|
|
320: (
|
|
{
|
|
"linear1.weight": tensor([1.0]),
|
|
"linear1.bias": tensor([1.0]),
|
|
"linear2.weight": tensor([1.0]),
|
|
"linear2.bias": tensor([1.0]),
|
|
},
|
|
{
|
|
"linear1.weight": tensor([1.0]),
|
|
"linear1.bias": tensor([1.0]),
|
|
"linear2.weight": tensor([1.0]),
|
|
"linear2.bias": tensor([1.0]),
|
|
},
|
|
),
|
|
}
|
|
sd_path = tmp_path / "sd.pt"
|
|
torch.save(state_dict_with_integer_keys, sd_path)
|
|
with pytest.raises(InvalidModelConfigException):
|
|
ModelProbe.get_model_type_from_checkpoint(sd_path, state_dict_with_integer_keys)
|
|
|
|
|
|
def test_probe_sd1_diffusers_inpainting(datadir: Path):
|
|
config = ModelProbe.probe(datadir / "sd-1/main/dreamshaper-8-inpainting")
|
|
assert isinstance(config, MainDiffusersConfig)
|
|
assert config.base is BaseModelType.StableDiffusion1
|
|
assert config.variant is ModelVariantType.Inpaint
|
|
assert config.repo_variant is ModelRepoVariant.FP16
|