2024-06-02 09:45:31 -04:00

58 lines
1.9 KiB
Python

"""
Base class and implementation of a class that moves models in and out of VRAM.
"""
import torch
from invokeai.backend.model_manager import AnyModel
from .model_cache_base import CacheRecord, ModelCacheBase, ModelLockerBase
class ModelLocker(ModelLockerBase):
"""Internal class that mediates movement in and out of GPU."""
def __init__(self, cache: ModelCacheBase[AnyModel], cache_entry: CacheRecord[AnyModel]):
"""
Initialize the model locker.
:param cache: The ModelCache object
:param cache_entry: The entry in the model cache
"""
self._cache = cache
self._cache_entry = cache_entry
@property
def model(self) -> AnyModel:
"""Return the model without moving it around."""
return self._cache_entry.model
def lock(self) -> AnyModel:
"""Move the model into the execution device (GPU) and lock it."""
self._cache_entry.lock()
try:
if self._cache.lazy_offloading:
self._cache.offload_unlocked_models(self._cache_entry.size)
self._cache.move_model_to_device(self._cache_entry, self._cache.execution_device)
self._cache_entry.loaded = True
self._cache.logger.debug(f"Locking {self._cache_entry.key} in {self._cache.execution_device}")
self._cache.print_cuda_stats()
except torch.cuda.OutOfMemoryError:
self._cache.logger.warning("Insufficient GPU memory to load model. Aborting")
self._cache_entry.unlock()
raise
except Exception:
self._cache_entry.unlock()
raise
return self.model
def unlock(self) -> None:
"""Call upon exit from context."""
self._cache_entry.unlock()
if not self._cache.lazy_offloading:
self._cache.offload_unlocked_models(0)
self._cache.print_cuda_stats()