mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-04-04 22:43:40 +08:00
- Rename old "model_management" directory to "model_management_OLD" in order to catch dangling references to original model manager. - Caught and fixed most dangling references (still checking) - Rename lora, textual_inversion and model_patcher modules - Introduce a RawModel base class to simplfy the Union returned by the model loaders. - Tidy up the model manager 2-related tests. Add useful fixtures, and a finalizer to the queue and installer fixtures that will stop the services and release threads.
157 lines
6.3 KiB
Python
157 lines
6.3 KiB
Python
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Team
|
|
"""Implementation of model loader service."""
|
|
|
|
from typing import Optional
|
|
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
|
from invokeai.app.services.invocation_processor.invocation_processor_common import CanceledException
|
|
from invokeai.app.services.invoker import Invoker
|
|
from invokeai.app.services.model_records import ModelRecordServiceBase, UnknownModelException
|
|
from invokeai.app.services.shared.invocation_context import InvocationContextData
|
|
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelType, SubModelType
|
|
from invokeai.backend.model_manager.load import AnyModelLoader, LoadedModel, ModelCache, ModelConvertCache
|
|
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
|
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
|
from invokeai.backend.util.logging import InvokeAILogger
|
|
|
|
from .model_load_base import ModelLoadServiceBase
|
|
|
|
|
|
class ModelLoadService(ModelLoadServiceBase):
|
|
"""Wrapper around AnyModelLoader."""
|
|
|
|
def __init__(
|
|
self,
|
|
app_config: InvokeAIAppConfig,
|
|
record_store: ModelRecordServiceBase,
|
|
ram_cache: ModelCacheBase[AnyModel],
|
|
convert_cache: ModelConvertCacheBase,
|
|
):
|
|
"""Initialize the model load service."""
|
|
logger = InvokeAILogger.get_logger(self.__class__.__name__)
|
|
logger.setLevel(app_config.log_level.upper())
|
|
self._store = record_store
|
|
self._any_loader = AnyModelLoader(
|
|
app_config=app_config,
|
|
logger=logger,
|
|
ram_cache=ram_cache,
|
|
convert_cache=convert_cache,
|
|
)
|
|
|
|
def start(self, invoker: Invoker) -> None:
|
|
self._invoker = invoker
|
|
|
|
@property
|
|
def ram_cache(self) -> ModelCacheBase[AnyModel]:
|
|
"""Return the RAM cache used by this loader."""
|
|
return self._any_loader.ram_cache
|
|
|
|
@property
|
|
def convert_cache(self) -> ModelConvertCacheBase:
|
|
"""Return the checkpoint convert cache used by this loader."""
|
|
return self._any_loader.convert_cache
|
|
|
|
def load_model_by_key(
|
|
self,
|
|
key: str,
|
|
submodel_type: Optional[SubModelType] = None,
|
|
context_data: Optional[InvocationContextData] = None,
|
|
) -> LoadedModel:
|
|
"""
|
|
Given a model's key, load it and return the LoadedModel object.
|
|
|
|
:param key: Key of model config to be fetched.
|
|
:param submodel: For main (pipeline models), the submodel to fetch.
|
|
:param context: Invocation context used for event reporting
|
|
"""
|
|
config = self._store.get_model(key)
|
|
return self.load_model_by_config(config, submodel_type, context_data)
|
|
|
|
def load_model_by_attr(
|
|
self,
|
|
model_name: str,
|
|
base_model: BaseModelType,
|
|
model_type: ModelType,
|
|
submodel: Optional[SubModelType] = None,
|
|
context_data: Optional[InvocationContextData] = None,
|
|
) -> LoadedModel:
|
|
"""
|
|
Given a model's attributes, search the database for it, and if found, load and return the LoadedModel object.
|
|
|
|
This is provided for API compatability with the get_model() method
|
|
in the original model manager. However, note that LoadedModel is
|
|
not the same as the original ModelInfo that ws returned.
|
|
|
|
:param model_name: Name of to be fetched.
|
|
:param base_model: Base model
|
|
:param model_type: Type of the model
|
|
:param submodel: For main (pipeline models), the submodel to fetch
|
|
:param context: The invocation context.
|
|
|
|
Exceptions: UnknownModelException -- model with this key not known
|
|
NotImplementedException -- a model loader was not provided at initialization time
|
|
ValueError -- more than one model matches this combination
|
|
"""
|
|
configs = self._store.search_by_attr(model_name, base_model, model_type)
|
|
if len(configs) == 0:
|
|
raise UnknownModelException(f"{base_model}/{model_type}/{model_name}: Unknown model")
|
|
elif len(configs) > 1:
|
|
raise ValueError(f"{base_model}/{model_type}/{model_name}: More than one model matches.")
|
|
else:
|
|
return self.load_model_by_key(configs[0].key, submodel)
|
|
|
|
def load_model_by_config(
|
|
self,
|
|
model_config: AnyModelConfig,
|
|
submodel_type: Optional[SubModelType] = None,
|
|
context_data: Optional[InvocationContextData] = None,
|
|
) -> LoadedModel:
|
|
"""
|
|
Given a model's configuration, load it and return the LoadedModel object.
|
|
|
|
:param model_config: Model configuration record (as returned by ModelRecordBase.get_model())
|
|
:param submodel: For main (pipeline models), the submodel to fetch.
|
|
:param context: Invocation context used for event reporting
|
|
"""
|
|
if context_data:
|
|
self._emit_load_event(
|
|
context_data=context_data,
|
|
model_config=model_config,
|
|
)
|
|
loaded_model = self._any_loader.load_model(model_config, submodel_type)
|
|
if context_data:
|
|
self._emit_load_event(
|
|
context_data=context_data,
|
|
model_config=model_config,
|
|
loaded=True,
|
|
)
|
|
return loaded_model
|
|
|
|
def _emit_load_event(
|
|
self,
|
|
context_data: InvocationContextData,
|
|
model_config: AnyModelConfig,
|
|
loaded: Optional[bool] = False,
|
|
) -> None:
|
|
if not self._invoker:
|
|
return
|
|
if self._invoker.services.queue.is_canceled(context_data.session_id):
|
|
raise CanceledException()
|
|
|
|
if not loaded:
|
|
self._invoker.services.events.emit_model_load_started(
|
|
queue_id=context_data.queue_id,
|
|
queue_item_id=context_data.queue_item_id,
|
|
queue_batch_id=context_data.batch_id,
|
|
graph_execution_state_id=context_data.session_id,
|
|
model_config=model_config,
|
|
)
|
|
else:
|
|
self._invoker.services.events.emit_model_load_completed(
|
|
queue_id=context_data.queue_id,
|
|
queue_item_id=context_data.queue_item_id,
|
|
queue_batch_id=context_data.batch_id,
|
|
graph_execution_state_id=context_data.session_id,
|
|
model_config=model_config,
|
|
)
|