InvokeAI/tests/backend/patches/sidecar_wrappers/test_linear_sidecar_wrapper.py

183 lines
7.3 KiB
Python

import copy
import torch
from invokeai.backend.patches.layers.concatenated_lora_layer import ConcatenatedLoRALayer
from invokeai.backend.patches.layers.flux_control_lora_layer import FluxControlLoRALayer
from invokeai.backend.patches.layers.full_layer import FullLayer
from invokeai.backend.patches.layers.lora_layer import LoRALayer
from invokeai.backend.patches.pad_with_zeros import pad_with_zeros
from invokeai.backend.patches.sidecar_wrappers.linear_sidecar_wrapper import LinearSidecarWrapper
@torch.no_grad()
def test_linear_sidecar_wrapper_lora():
# Create a linear layer.
in_features = 10
out_features = 20
linear = torch.nn.Linear(in_features, out_features)
# Create a LoRA layer.
rank = 4
down = torch.randn(rank, in_features)
up = torch.randn(out_features, rank)
bias = torch.randn(out_features)
lora_layer = LoRALayer(up=up, mid=None, down=down, alpha=1.0, bias=bias)
# Patch the LoRA layer into the linear layer.
linear_patched = copy.deepcopy(linear)
linear_patched.weight.data += lora_layer.get_weight(linear_patched.weight) * lora_layer.scale()
linear_patched.bias.data += lora_layer.get_bias(linear_patched.bias) * lora_layer.scale()
# Create a LinearSidecarWrapper.
lora_wrapped = LinearSidecarWrapper(linear, [(lora_layer, 1.0)])
# Run the LoRA-patched linear layer and the LinearSidecarWrapper and assert they are equal.
input = torch.randn(1, in_features)
output_patched = linear_patched(input)
output_wrapped = lora_wrapped(input)
assert torch.allclose(output_patched, output_wrapped, atol=1e-6)
@torch.no_grad()
def test_linear_sidecar_wrapper_multiple_loras():
# Create a linear layer.
in_features = 10
out_features = 20
linear = torch.nn.Linear(in_features, out_features)
# Create two LoRA layers.
rank = 4
lora_layer = LoRALayer(
up=torch.randn(out_features, rank),
mid=None,
down=torch.randn(rank, in_features),
alpha=1.0,
bias=torch.randn(out_features),
)
lora_layer_2 = LoRALayer(
up=torch.randn(out_features, rank),
mid=None,
down=torch.randn(rank, in_features),
alpha=1.0,
bias=torch.randn(out_features),
)
# We use different weights for the two LoRA layers to ensure this is working.
lora_weight = 1.0
lora_weight_2 = 0.5
# Patch the LoRA layers into the linear layer.
linear_patched = copy.deepcopy(linear)
linear_patched.weight.data += lora_layer.get_weight(linear_patched.weight) * (lora_layer.scale() * lora_weight)
linear_patched.bias.data += lora_layer.get_bias(linear_patched.bias) * (lora_layer.scale() * lora_weight)
linear_patched.weight.data += lora_layer_2.get_weight(linear_patched.weight) * (
lora_layer_2.scale() * lora_weight_2
)
linear_patched.bias.data += lora_layer_2.get_bias(linear_patched.bias) * (lora_layer_2.scale() * lora_weight_2)
# Create a LinearSidecarWrapper.
lora_wrapped = LinearSidecarWrapper(linear, [(lora_layer, lora_weight), (lora_layer_2, lora_weight_2)])
# Run the LoRA-patched linear layer and the LinearSidecarWrapper and assert they are equal.
input = torch.randn(1, in_features)
output_patched = linear_patched(input)
output_wrapped = lora_wrapped(input)
assert torch.allclose(output_patched, output_wrapped, atol=1e-6)
@torch.no_grad()
def test_linear_sidecar_wrapper_concatenated_lora():
# Create a linear layer.
in_features = 5
sub_layer_out_features = [5, 10, 15]
linear = torch.nn.Linear(in_features, sum(sub_layer_out_features))
# Create a ConcatenatedLoRA layer.
rank = 4
sub_layers: list[LoRALayer] = []
for out_features in sub_layer_out_features:
down = torch.randn(rank, in_features)
up = torch.randn(out_features, rank)
bias = torch.randn(out_features)
sub_layers.append(LoRALayer(up=up, mid=None, down=down, alpha=1.0, bias=bias))
concatenated_lora_layer = ConcatenatedLoRALayer(sub_layers, concat_axis=0)
# Patch the ConcatenatedLoRA layer into the linear layer.
linear_patched = copy.deepcopy(linear)
linear_patched.weight.data += (
concatenated_lora_layer.get_weight(linear_patched.weight) * concatenated_lora_layer.scale()
)
linear_patched.bias.data += concatenated_lora_layer.get_bias(linear_patched.bias) * concatenated_lora_layer.scale()
# Create a LinearSidecarWrapper.
lora_wrapped = LinearSidecarWrapper(linear, [(concatenated_lora_layer, 1.0)])
# Run the ConcatenatedLoRA-patched linear layer and the LinearSidecarWrapper and assert they are equal.
input = torch.randn(1, in_features)
output_patched = linear_patched(input)
output_wrapped = lora_wrapped(input)
assert torch.allclose(output_patched, output_wrapped, atol=1e-6)
def test_linear_sidecar_wrapper_full_layer():
# Create a linear layer.
in_features = 10
out_features = 20
linear = torch.nn.Linear(in_features, out_features)
# Create a FullLayer.
full_layer = FullLayer(weight=torch.randn(out_features, in_features), bias=torch.randn(out_features))
# Patch the FullLayer into the linear layer.
linear_patched = copy.deepcopy(linear)
linear_patched.weight.data += full_layer.get_weight(linear_patched.weight)
linear_patched.bias.data += full_layer.get_bias(linear_patched.bias)
# Create a LinearSidecarWrapper.
full_wrapped = LinearSidecarWrapper(linear, [(full_layer, 1.0)])
# Run the FullLayer-patched linear layer and the LinearSidecarWrapper and assert they are equal.
input = torch.randn(1, in_features)
output_patched = linear_patched(input)
output_wrapped = full_wrapped(input)
assert torch.allclose(output_patched, output_wrapped, atol=1e-6)
def test_linear_sidecar_wrapper_flux_control_lora_layer():
# Create a linear layer.
orig_in_features = 10
out_features = 40
linear = torch.nn.Linear(orig_in_features, out_features)
# Create a FluxControlLoRALayer.
patched_in_features = 20
rank = 4
lora_layer = FluxControlLoRALayer(
up=torch.randn(out_features, rank),
mid=None,
down=torch.randn(rank, patched_in_features),
alpha=1.0,
bias=torch.randn(out_features),
)
# Patch the FluxControlLoRALayer into the linear layer.
linear_patched = copy.deepcopy(linear)
# Expand the existing weight.
expanded_weight = pad_with_zeros(linear_patched.weight, torch.Size([out_features, patched_in_features]))
linear_patched.weight = torch.nn.Parameter(expanded_weight, requires_grad=linear_patched.weight.requires_grad)
# Expand the existing bias.
expanded_bias = pad_with_zeros(linear_patched.bias, torch.Size([out_features]))
linear_patched.bias = torch.nn.Parameter(expanded_bias, requires_grad=linear_patched.bias.requires_grad)
# Add the residuals.
linear_patched.weight.data += lora_layer.get_weight(linear_patched.weight) * lora_layer.scale()
linear_patched.bias.data += lora_layer.get_bias(linear_patched.bias) * lora_layer.scale()
# Create a LinearSidecarWrapper.
lora_wrapped = LinearSidecarWrapper(linear, [(lora_layer, 1.0)])
# Run the FluxControlLoRA-patched linear layer and the LinearSidecarWrapper and assert they are equal.
input = torch.randn(1, patched_in_features)
output_patched = linear_patched(input)
output_wrapped = lora_wrapped(input)
assert torch.allclose(output_patched, output_wrapped, atol=1e-6)