InvokeAI/tests/backend/patches/test_lora_patcher.py

198 lines
8.6 KiB
Python

import pytest
import torch
from invokeai.backend.patches.layers.lora_layer import LoRALayer
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.patches.model_patcher import LayerPatcher
class DummyModule(torch.nn.Module):
def __init__(self, in_features: int, out_features: int, device: str, dtype: torch.dtype):
super().__init__()
self.linear_layer_1 = torch.nn.Linear(in_features, out_features, device=device, dtype=dtype)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.linear_layer_1(x)
@pytest.mark.parametrize(
["device", "num_layers"],
[
("cpu", 1),
pytest.param("cuda", 1, marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA device")),
("cpu", 2),
pytest.param("cuda", 2, marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA device")),
],
)
@torch.no_grad()
def test_apply_lora_patches(device: str, num_layers: int):
"""Test the basic behavior of ModelPatcher.apply_lora_patches(...). Check that patching and unpatching produce the
correct result, and that model/LoRA tensors are moved between devices as expected.
"""
linear_in_features = 4
linear_out_features = 8
lora_rank = 2
model = DummyModule(linear_in_features, linear_out_features, device=device, dtype=torch.float16)
# Initialize num_layers LoRA models with weights of 0.5.
lora_weight = 0.5
lora_models: list[tuple[ModelPatchRaw, float]] = []
for _ in range(num_layers):
lora_layers = {
"linear_layer_1": LoRALayer.from_state_dict_values(
values={
"lora_down.weight": torch.ones((lora_rank, linear_in_features), device="cpu", dtype=torch.float16),
"lora_up.weight": torch.ones((linear_out_features, lora_rank), device="cpu", dtype=torch.float16),
},
)
}
lora = ModelPatchRaw(lora_layers)
lora_models.append((lora, lora_weight))
orig_linear_weight = model.linear_layer_1.weight.data.detach().clone()
expected_patched_linear_weight = orig_linear_weight + (lora_rank * lora_weight * num_layers)
with LayerPatcher.apply_model_patches(model=model, patches=lora_models, prefix=""):
# After patching, all LoRA layer weights should have been moved back to the cpu.
for lora, _ in lora_models:
assert lora.layers["linear_layer_1"].up.device.type == "cpu"
assert lora.layers["linear_layer_1"].down.device.type == "cpu"
# After patching, the patched model should still be on its original device.
assert model.linear_layer_1.weight.data.device.type == device
torch.testing.assert_close(model.linear_layer_1.weight.data, expected_patched_linear_weight)
# After unpatching, the original model weights should have been restored on the original device.
assert model.linear_layer_1.weight.data.device.type == device
torch.testing.assert_close(model.linear_layer_1.weight.data, orig_linear_weight)
@pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA device")
@torch.no_grad()
def test_apply_lora_patches_change_device():
"""Test that if LoRA patching is applied on the CPU, and then the patched model is moved to the GPU, unpatching
still behaves correctly.
"""
linear_in_features = 4
linear_out_features = 8
lora_dim = 2
# Initialize the model on the CPU.
model = DummyModule(linear_in_features, linear_out_features, device="cpu", dtype=torch.float16)
lora_layers = {
"linear_layer_1": LoRALayer.from_state_dict_values(
values={
"lora_down.weight": torch.ones((lora_dim, linear_in_features), device="cpu", dtype=torch.float16),
"lora_up.weight": torch.ones((linear_out_features, lora_dim), device="cpu", dtype=torch.float16),
},
)
}
lora = ModelPatchRaw(lora_layers)
orig_linear_weight = model.linear_layer_1.weight.data.detach().clone()
with LayerPatcher.apply_model_patches(model=model, patches=[(lora, 0.5)], prefix=""):
# After patching, all LoRA layer weights should have been moved back to the cpu.
assert lora_layers["linear_layer_1"].up.device.type == "cpu"
assert lora_layers["linear_layer_1"].down.device.type == "cpu"
# After patching, the patched model should still be on the CPU.
assert model.linear_layer_1.weight.data.device.type == "cpu"
# Move the model to the GPU.
assert model.to("cuda")
# After unpatching, the original model weights should have been restored on the GPU.
assert model.linear_layer_1.weight.data.device.type == "cuda"
torch.testing.assert_close(model.linear_layer_1.weight.data, orig_linear_weight, check_device=False)
@pytest.mark.parametrize(
["device", "num_layers"],
[
("cpu", 1),
pytest.param("cuda", 1, marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA device")),
("cpu", 2),
pytest.param("cuda", 2, marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA device")),
],
)
def test_apply_lora_sidecar_patches(device: str, num_layers: int):
"""Test the basic behavior of ModelPatcher.apply_lora_sidecar_patches(...). Check that unpatching works correctly."""
dtype = torch.float16
linear_in_features = 4
linear_out_features = 8
lora_rank = 2
model = DummyModule(linear_in_features, linear_out_features, device=device, dtype=dtype)
# Initialize num_layers LoRA models with weights of 0.5.
lora_weight = 0.5
lora_models: list[tuple[ModelPatchRaw, float]] = []
for _ in range(num_layers):
lora_layers = {
"linear_layer_1": LoRALayer.from_state_dict_values(
values={
"lora_down.weight": torch.ones((lora_rank, linear_in_features), device="cpu", dtype=torch.float16),
"lora_up.weight": torch.ones((linear_out_features, lora_rank), device="cpu", dtype=torch.float16),
},
)
}
lora = ModelPatchRaw(lora_layers)
lora_models.append((lora, lora_weight))
# Run inference before patching the model.
input = torch.randn(1, linear_in_features, device=device, dtype=dtype)
output_before_patch = model(input)
# Patch the model and run inference during the patch.
with LayerPatcher.apply_model_sidecar_patches(model=model, patches=lora_models, prefix="", dtype=dtype):
output_during_patch = model(input)
# Run inference after unpatching.
output_after_patch = model(input)
# Check that the output before patching is different from the output during patching.
assert not torch.allclose(output_before_patch, output_during_patch)
# Check that the output before patching is the same as the output after patching.
assert torch.allclose(output_before_patch, output_after_patch)
@torch.no_grad()
@pytest.mark.parametrize(["num_layers"], [(1,), (2,)])
def test_apply_lora_sidecar_patches_matches_apply_lora_patches(num_layers: int):
"""Test that apply_lora_sidecar_patches(...) produces the same model outputs as apply_lora_patches(...)."""
dtype = torch.float32
linear_in_features = 4
linear_out_features = 8
lora_rank = 2
model = DummyModule(linear_in_features, linear_out_features, device="cpu", dtype=dtype)
# Initialize num_layers LoRA models with weights of 0.5.
lora_weight = 0.5
lora_models: list[tuple[ModelPatchRaw, float]] = []
for _ in range(num_layers):
lora_layers = {
"linear_layer_1": LoRALayer.from_state_dict_values(
values={
"lora_down.weight": torch.ones((lora_rank, linear_in_features), device="cpu", dtype=torch.float16),
"lora_up.weight": torch.ones((linear_out_features, lora_rank), device="cpu", dtype=torch.float16),
},
)
}
lora = ModelPatchRaw(lora_layers)
lora_models.append((lora, lora_weight))
input = torch.randn(1, linear_in_features, device="cpu", dtype=dtype)
with LayerPatcher.apply_model_patches(model=model, patches=lora_models, prefix=""):
output_lora_patches = model(input)
with LayerPatcher.apply_model_sidecar_patches(model=model, patches=lora_models, prefix="", dtype=dtype):
output_lora_sidecar_patches = model(input)
# Note: We set atol=1e-5 because the test failed occasionally with the default atol=1e-8. Slight numerical
# differences are tolerable and expected due to the difference between sidecar vs. patching.
assert torch.allclose(output_lora_patches, output_lora_sidecar_patches, atol=1e-5)