mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-04-04 22:43:40 +08:00
170 lines
6.5 KiB
Python
170 lines
6.5 KiB
Python
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Team
|
|
"""Implementation of model loader service."""
|
|
|
|
from pathlib import Path
|
|
from typing import Callable, Dict, Optional, Type
|
|
|
|
from picklescan.scanner import scan_file_path
|
|
from safetensors.torch import load_file as safetensors_load_file
|
|
from torch import Tensor
|
|
from torch import load as torch_load
|
|
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
|
from invokeai.app.services.invoker import Invoker
|
|
from invokeai.app.services.shared.invocation_context import InvocationContextData
|
|
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
|
|
from invokeai.backend.model_manager.load import (
|
|
LoadedModel,
|
|
ModelLoaderRegistry,
|
|
ModelLoaderRegistryBase,
|
|
)
|
|
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
|
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
|
from invokeai.backend.util.logging import InvokeAILogger
|
|
|
|
from .model_load_base import ModelLoadServiceBase
|
|
|
|
|
|
class ModelLoadService(ModelLoadServiceBase):
|
|
"""Wrapper around ModelLoaderRegistry."""
|
|
|
|
def __init__(
|
|
self,
|
|
app_config: InvokeAIAppConfig,
|
|
ram_cache: ModelCacheBase[AnyModel],
|
|
convert_cache: ModelConvertCacheBase,
|
|
registry: Optional[Type[ModelLoaderRegistryBase]] = ModelLoaderRegistry,
|
|
):
|
|
"""Initialize the model load service."""
|
|
logger = InvokeAILogger.get_logger(self.__class__.__name__)
|
|
logger.setLevel(app_config.log_level.upper())
|
|
self._logger = logger
|
|
self._app_config = app_config
|
|
self._ram_cache = ram_cache
|
|
self._convert_cache = convert_cache
|
|
self._registry = registry
|
|
|
|
def start(self, invoker: Invoker) -> None:
|
|
self._invoker = invoker
|
|
|
|
@property
|
|
def ram_cache(self) -> ModelCacheBase[AnyModel]:
|
|
"""Return the RAM cache used by this loader."""
|
|
return self._ram_cache
|
|
|
|
@property
|
|
def convert_cache(self) -> ModelConvertCacheBase:
|
|
"""Return the checkpoint convert cache used by this loader."""
|
|
return self._convert_cache
|
|
|
|
def load_model(
|
|
self,
|
|
model_config: AnyModelConfig,
|
|
submodel_type: Optional[SubModelType] = None,
|
|
context_data: Optional[InvocationContextData] = None,
|
|
) -> LoadedModel:
|
|
"""
|
|
Given a model's configuration, load it and return the LoadedModel object.
|
|
|
|
:param model_config: Model configuration record (as returned by ModelRecordBase.get_model())
|
|
:param submodel: For main (pipeline models), the submodel to fetch.
|
|
:param context: Invocation context used for event reporting
|
|
"""
|
|
if context_data:
|
|
self._emit_load_event(
|
|
context_data=context_data,
|
|
model_config=model_config,
|
|
submodel_type=submodel_type,
|
|
)
|
|
|
|
implementation, model_config, submodel_type = self._registry.get_implementation(model_config, submodel_type) # type: ignore
|
|
loaded_model: LoadedModel = implementation(
|
|
app_config=self._app_config,
|
|
logger=self._logger,
|
|
ram_cache=self._ram_cache,
|
|
convert_cache=self._convert_cache,
|
|
).load_model(model_config, submodel_type)
|
|
|
|
if context_data:
|
|
self._emit_load_event(
|
|
context_data=context_data,
|
|
model_config=model_config,
|
|
submodel_type=submodel_type,
|
|
loaded=True,
|
|
)
|
|
return loaded_model
|
|
|
|
def load_ckpt_from_path(
|
|
self, model_path: Path, loader: Optional[Callable[[Path], Dict[str, Tensor]]] = None
|
|
) -> LoadedModel:
|
|
"""
|
|
Load the checkpoint-format model file located at the indicated Path.
|
|
|
|
This will load an arbitrary model file into the RAM cache. If the optional loader
|
|
argument is provided, the loader will be invoked to load the model into
|
|
memory. Otherwise the method will call safetensors.torch.load_file() or
|
|
torch.load() as appropriate to the file suffix.
|
|
|
|
Be aware that the LoadedModel object will have a `config` attribute of None.
|
|
|
|
Args:
|
|
model_path: A pathlib.Path to a checkpoint-style models file
|
|
loader: A Callable that expects a Path and returns a Dict[str, Tensor]
|
|
|
|
Returns:
|
|
A LoadedModel object.
|
|
"""
|
|
cache_key = str(model_path)
|
|
ram_cache = self.ram_cache
|
|
try:
|
|
return LoadedModel(_locker=ram_cache.get(key=cache_key))
|
|
except IndexError:
|
|
pass
|
|
|
|
def torch_load_file(checkpoint: Path) -> Dict[str, Tensor]:
|
|
scan_result = scan_file_path(checkpoint)
|
|
if scan_result.infected_files != 0:
|
|
raise Exception("The model at {checkpoint} is potentially infected by malware. Aborting load.")
|
|
result: Dict[str, Tensor] = torch_load(checkpoint, map_location="cpu")
|
|
return result
|
|
|
|
if loader is None:
|
|
loader = (
|
|
torch_load_file
|
|
if model_path.suffix.endswith((".ckpt", ".pt", ".pth", ".bin"))
|
|
else lambda path: safetensors_load_file(path, device="cpu")
|
|
)
|
|
|
|
raw_model = loader(model_path)
|
|
ram_cache.put(key=cache_key, model=raw_model)
|
|
return LoadedModel(_locker=ram_cache.get(key=cache_key))
|
|
|
|
def _emit_load_event(
|
|
self,
|
|
context_data: InvocationContextData,
|
|
model_config: AnyModelConfig,
|
|
loaded: Optional[bool] = False,
|
|
submodel_type: Optional[SubModelType] = None,
|
|
) -> None:
|
|
if not self._invoker:
|
|
return
|
|
|
|
if not loaded:
|
|
self._invoker.services.events.emit_model_load_started(
|
|
queue_id=context_data.queue_item.queue_id,
|
|
queue_item_id=context_data.queue_item.item_id,
|
|
queue_batch_id=context_data.queue_item.batch_id,
|
|
graph_execution_state_id=context_data.queue_item.session_id,
|
|
model_config=model_config,
|
|
submodel_type=submodel_type,
|
|
)
|
|
else:
|
|
self._invoker.services.events.emit_model_load_completed(
|
|
queue_id=context_data.queue_item.queue_id,
|
|
queue_item_id=context_data.queue_item.item_id,
|
|
queue_batch_id=context_data.queue_item.batch_id,
|
|
graph_execution_state_id=context_data.queue_item.session_id,
|
|
model_config=model_config,
|
|
submodel_type=submodel_type,
|
|
)
|