mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-04-04 22:43:40 +08:00
58 lines
1.9 KiB
Python
58 lines
1.9 KiB
Python
"""
|
|
Base class and implementation of a class that moves models in and out of VRAM.
|
|
"""
|
|
|
|
import torch
|
|
|
|
from invokeai.backend.model_manager import AnyModel
|
|
|
|
from .model_cache_base import CacheRecord, ModelCacheBase, ModelLockerBase
|
|
|
|
|
|
class ModelLocker(ModelLockerBase):
|
|
"""Internal class that mediates movement in and out of GPU."""
|
|
|
|
def __init__(self, cache: ModelCacheBase[AnyModel], cache_entry: CacheRecord[AnyModel]):
|
|
"""
|
|
Initialize the model locker.
|
|
|
|
:param cache: The ModelCache object
|
|
:param cache_entry: The entry in the model cache
|
|
"""
|
|
self._cache = cache
|
|
self._cache_entry = cache_entry
|
|
|
|
@property
|
|
def model(self) -> AnyModel:
|
|
"""Return the model without moving it around."""
|
|
return self._cache_entry.model
|
|
|
|
def lock(self) -> AnyModel:
|
|
"""Move the model into the execution device (GPU) and lock it."""
|
|
self._cache_entry.lock()
|
|
try:
|
|
if self._cache.lazy_offloading:
|
|
self._cache.offload_unlocked_models(self._cache_entry.size)
|
|
|
|
self._cache.move_model_to_device(self._cache_entry, self._cache.execution_device)
|
|
self._cache_entry.loaded = True
|
|
|
|
self._cache.logger.debug(f"Locking {self._cache_entry.key} in {self._cache.execution_device}")
|
|
self._cache.print_cuda_stats()
|
|
except torch.cuda.OutOfMemoryError:
|
|
self._cache.logger.warning("Insufficient GPU memory to load model. Aborting")
|
|
self._cache_entry.unlock()
|
|
raise
|
|
except Exception:
|
|
self._cache_entry.unlock()
|
|
raise
|
|
|
|
return self.model
|
|
|
|
def unlock(self) -> None:
|
|
"""Call upon exit from context."""
|
|
self._cache_entry.unlock()
|
|
if not self._cache.lazy_offloading:
|
|
self._cache.offload_unlocked_models(self._cache_entry.size)
|
|
self._cache.print_cuda_stats()
|