mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-04-04 22:43:40 +08:00
Our events handling and implementation has a couple pain points: - Adding or removing data from event payloads requires changes wherever the events are dispatched from. - We have no type safety for events and need to rely on string matching and dict access when interacting with events. - Frontend types for socket events must be manually typed. This has caused several bugs. `fastapi-events` has a neat feature where you can create a pydantic model as an event payload, give it an `__event_name__` attr, and then dispatch the model directly. This allows us to eliminate a layer of indirection and some unpleasant complexity: - Event handler callbacks get type hints for their event payloads, and can use `isinstance` on them if needed. - Event payload construction is now the responsibility of the event itself (a pydantic model), not the service. Every event model has a `build` class method, encapsulating this logic. The build methods are provided as few args as possible. For example, `InvocationStartedEvent.build()` gets the invocation instance and queue item, and can choose the data it wants to include in the event payload. - Frontend event types may be autogenerated from the OpenAPI schema. We use the payload registry feature of `fastapi-events` to collect all payload models into one place, making it trivial to keep our schema and frontend types in sync. This commit moves the backend over to this improved event handling setup.
74 lines
2.8 KiB
Python
74 lines
2.8 KiB
Python
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Team
|
|
"""Implementation of model loader service."""
|
|
|
|
from typing import Optional, Type
|
|
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
|
from invokeai.app.services.invoker import Invoker
|
|
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
|
|
from invokeai.backend.model_manager.load import (
|
|
LoadedModel,
|
|
ModelLoaderRegistry,
|
|
ModelLoaderRegistryBase,
|
|
)
|
|
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
|
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
|
from invokeai.backend.util.logging import InvokeAILogger
|
|
|
|
from .model_load_base import ModelLoadServiceBase
|
|
|
|
|
|
class ModelLoadService(ModelLoadServiceBase):
|
|
"""Wrapper around ModelLoaderRegistry."""
|
|
|
|
def __init__(
|
|
self,
|
|
app_config: InvokeAIAppConfig,
|
|
ram_cache: ModelCacheBase[AnyModel],
|
|
convert_cache: ModelConvertCacheBase,
|
|
registry: Optional[Type[ModelLoaderRegistryBase]] = ModelLoaderRegistry,
|
|
):
|
|
"""Initialize the model load service."""
|
|
logger = InvokeAILogger.get_logger(self.__class__.__name__)
|
|
logger.setLevel(app_config.log_level.upper())
|
|
self._logger = logger
|
|
self._app_config = app_config
|
|
self._ram_cache = ram_cache
|
|
self._convert_cache = convert_cache
|
|
self._registry = registry
|
|
|
|
def start(self, invoker: Invoker) -> None:
|
|
self._invoker = invoker
|
|
|
|
@property
|
|
def ram_cache(self) -> ModelCacheBase[AnyModel]:
|
|
"""Return the RAM cache used by this loader."""
|
|
return self._ram_cache
|
|
|
|
@property
|
|
def convert_cache(self) -> ModelConvertCacheBase:
|
|
"""Return the checkpoint convert cache used by this loader."""
|
|
return self._convert_cache
|
|
|
|
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
|
|
"""
|
|
Given a model's configuration, load it and return the LoadedModel object.
|
|
|
|
:param model_config: Model configuration record (as returned by ModelRecordBase.get_model())
|
|
:param submodel: For main (pipeline models), the submodel to fetch.
|
|
"""
|
|
|
|
self._invoker.services.events.emit_model_load_started(model_config, submodel_type)
|
|
|
|
implementation, model_config, submodel_type = self._registry.get_implementation(model_config, submodel_type) # type: ignore
|
|
loaded_model: LoadedModel = implementation(
|
|
app_config=self._app_config,
|
|
logger=self._logger,
|
|
ram_cache=self._ram_cache,
|
|
convert_cache=self._convert_cache,
|
|
).load_model(model_config, submodel_type)
|
|
|
|
self._invoker.services.events.emit_model_load_started(model_config, submodel_type)
|
|
|
|
return loaded_model
|