mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-04-04 22:43:40 +08:00
35 lines
1.4 KiB
Python
35 lines
1.4 KiB
Python
import cv2
|
|
|
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
|
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
|
|
from invokeai.app.invocations.primitives import ImageOutput
|
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
|
from invokeai.backend.image_util.util import cv2_to_pil, pil_to_cv2
|
|
|
|
|
|
@invocation(
|
|
"canny_edge_detection",
|
|
title="Canny Edge Detection",
|
|
tags=["controlnet", "canny"],
|
|
category="controlnet",
|
|
version="1.0.0",
|
|
)
|
|
class CannyEdgeDetectionInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Geneartes an edge map using a cv2's Canny algorithm."""
|
|
|
|
image: ImageField = InputField(description="The image to process")
|
|
low_threshold: int = InputField(
|
|
default=100, ge=0, le=255, description="The low threshold of the Canny pixel gradient (0-255)"
|
|
)
|
|
high_threshold: int = InputField(
|
|
default=200, ge=0, le=255, description="The high threshold of the Canny pixel gradient (0-255)"
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name, "RGB")
|
|
np_img = pil_to_cv2(image)
|
|
edge_map = cv2.Canny(np_img, self.low_threshold, self.high_threshold)
|
|
edge_map_pil = cv2_to_pil(edge_map)
|
|
image_dto = context.images.save(image=edge_map_pil)
|
|
return ImageOutput.build(image_dto)
|