mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-04-04 22:43:40 +08:00
Similar to the existing node, but without any resizing. The backend logic was consolidated and modified so that it the model loading can be managed by the model manager. The ONNX Runtime `InferenceSession` class was added to the `AnyModel` union to satisfy the type checker.
51 lines
2.2 KiB
Python
51 lines
2.2 KiB
Python
import onnxruntime as ort
|
|
|
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
|
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
|
|
from invokeai.app.invocations.primitives import ImageOutput
|
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
|
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector2
|
|
|
|
|
|
@invocation(
|
|
"dw_openpose_detection",
|
|
title="DW Openpose Detection",
|
|
tags=["controlnet", "dwpose", "openpose"],
|
|
category="controlnet",
|
|
version="1.1.1",
|
|
)
|
|
class DWOpenposeDetectionInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Generates an openpose pose from an image using DWPose"""
|
|
|
|
image: ImageField = InputField(description="The image to process")
|
|
draw_body: bool = InputField(default=True)
|
|
draw_face: bool = InputField(default=False)
|
|
draw_hands: bool = InputField(default=False)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name, "RGB")
|
|
|
|
onnx_det_path = context.models.download_and_cache_model(DWOpenposeDetector2.get_model_url_det())
|
|
onnx_pose_path = context.models.download_and_cache_model(DWOpenposeDetector2.get_model_url_pose())
|
|
|
|
loaded_session_det = context.models.load_local_model(
|
|
onnx_det_path, DWOpenposeDetector2.create_onnx_inference_session
|
|
)
|
|
loaded_session_pose = context.models.load_local_model(
|
|
onnx_pose_path, DWOpenposeDetector2.create_onnx_inference_session
|
|
)
|
|
|
|
with loaded_session_det as session_det, loaded_session_pose as session_pose:
|
|
assert isinstance(session_det, ort.InferenceSession)
|
|
assert isinstance(session_pose, ort.InferenceSession)
|
|
detector = DWOpenposeDetector2(session_det=session_det, session_pose=session_pose)
|
|
detected_image = detector.run(
|
|
image,
|
|
draw_face=self.draw_face,
|
|
draw_hands=self.draw_hands,
|
|
draw_body=self.draw_body,
|
|
)
|
|
image_dto = context.images.save(image=detected_image)
|
|
|
|
return ImageOutput.build(image_dto)
|