mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-04-04 22:43:40 +08:00
90 lines
3.8 KiB
Python
90 lines
3.8 KiB
Python
from builtins import float
|
|
from typing import List, Literal, Union
|
|
|
|
from pydantic import field_validator, model_validator
|
|
from typing_extensions import Self
|
|
|
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
|
from invokeai.app.invocations.fields import InputField, UIType
|
|
from invokeai.app.invocations.ip_adapter import (
|
|
CLIP_VISION_MODEL_MAP,
|
|
IPAdapterField,
|
|
IPAdapterInvocation,
|
|
IPAdapterOutput,
|
|
)
|
|
from invokeai.app.invocations.model import ModelIdentifierField
|
|
from invokeai.app.invocations.primitives import ImageField
|
|
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
|
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
|
from invokeai.backend.model_manager.config import (
|
|
IPAdapterCheckpointConfig,
|
|
IPAdapterInvokeAIConfig,
|
|
)
|
|
|
|
|
|
@invocation(
|
|
"flux_ip_adapter",
|
|
title="FLUX IP-Adapter",
|
|
tags=["ip_adapter", "control"],
|
|
category="ip_adapter",
|
|
version="1.0.0",
|
|
classification=Classification.Prototype,
|
|
)
|
|
class FluxIPAdapterInvocation(BaseInvocation):
|
|
"""Collects FLUX IP-Adapter info to pass to other nodes."""
|
|
|
|
# FLUXIPAdapterInvocation is based closely on IPAdapterInvocation, but with some unsupported features removed.
|
|
|
|
image: ImageField = InputField(description="The IP-Adapter image prompt(s).")
|
|
ip_adapter_model: ModelIdentifierField = InputField(
|
|
description="The IP-Adapter model.", title="IP-Adapter Model", ui_type=UIType.IPAdapterModel
|
|
)
|
|
# Currently, the only known ViT model used by FLUX IP-Adapters is ViT-L.
|
|
clip_vision_model: Literal["ViT-L"] = InputField(description="CLIP Vision model to use.", default="ViT-L")
|
|
weight: Union[float, List[float]] = InputField(
|
|
default=1, description="The weight given to the IP-Adapter", title="Weight"
|
|
)
|
|
begin_step_percent: float = InputField(
|
|
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
|
|
)
|
|
end_step_percent: float = InputField(
|
|
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
|
|
)
|
|
|
|
@field_validator("weight")
|
|
@classmethod
|
|
def validate_ip_adapter_weight(cls, v: float) -> float:
|
|
validate_weights(v)
|
|
return v
|
|
|
|
@model_validator(mode="after")
|
|
def validate_begin_end_step_percent(self) -> Self:
|
|
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
|
return self
|
|
|
|
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
|
|
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
|
|
ip_adapter_info = context.models.get_config(self.ip_adapter_model.key)
|
|
assert isinstance(ip_adapter_info, (IPAdapterInvokeAIConfig, IPAdapterCheckpointConfig))
|
|
|
|
# Note: There is a IPAdapterInvokeAIConfig.image_encoder_model_id field, but it isn't trustworthy.
|
|
image_encoder_starter_model = CLIP_VISION_MODEL_MAP[self.clip_vision_model]
|
|
image_encoder_model_id = image_encoder_starter_model.source
|
|
image_encoder_model_name = image_encoder_starter_model.name
|
|
image_encoder_model = IPAdapterInvocation.get_clip_image_encoder(
|
|
context, image_encoder_model_id, image_encoder_model_name
|
|
)
|
|
|
|
return IPAdapterOutput(
|
|
ip_adapter=IPAdapterField(
|
|
image=self.image,
|
|
ip_adapter_model=self.ip_adapter_model,
|
|
image_encoder_model=ModelIdentifierField.from_config(image_encoder_model),
|
|
weight=self.weight,
|
|
target_blocks=[], # target_blocks is currently unused for FLUX IP-Adapters.
|
|
begin_step_percent=self.begin_step_percent,
|
|
end_step_percent=self.end_step_percent,
|
|
mask=None, # mask is currently unused for FLUX IP-Adapters.
|
|
),
|
|
)
|