mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-04-04 22:43:40 +08:00
Similar to the existing node, but without any resizing and with a revised model loading API that uses the model manager.
34 lines
1.5 KiB
Python
34 lines
1.5 KiB
Python
from builtins import bool
|
|
|
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
|
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, WithBoard, WithMetadata
|
|
from invokeai.app.invocations.primitives import ImageOutput
|
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
|
from invokeai.backend.image_util.hed import ControlNetHED_Apache2, HEDEdgeDetector
|
|
|
|
|
|
@invocation(
|
|
"hed_edge_detection",
|
|
title="HED Edge Detection",
|
|
tags=["controlnet", "hed", "softedge"],
|
|
category="controlnet",
|
|
version="1.0.0",
|
|
)
|
|
class HEDEdgeDetectionInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Geneartes an edge map using the HED (softedge) model."""
|
|
|
|
image: ImageField = InputField(description="The image to process")
|
|
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name, "RGB")
|
|
loaded_model = context.models.load_remote_model(HEDEdgeDetector.get_model_url(), HEDEdgeDetector.load_model)
|
|
|
|
with loaded_model as model:
|
|
assert isinstance(model, ControlNetHED_Apache2)
|
|
hed_processor = HEDEdgeDetector(model)
|
|
edge_map = hed_processor.run(image=image, scribble=self.scribble)
|
|
|
|
image_dto = context.images.save(image=edge_map)
|
|
return ImageOutput.build(image_dto)
|