mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-04-04 22:43:40 +08:00
40 lines
1.7 KiB
Python
40 lines
1.7 KiB
Python
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
|
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
|
|
from invokeai.app.invocations.primitives import ImageOutput
|
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
|
from invokeai.backend.image_util.mlsd import MLSDDetector
|
|
from invokeai.backend.image_util.mlsd.models.mbv2_mlsd_large import MobileV2_MLSD_Large
|
|
|
|
|
|
@invocation(
|
|
"mlsd_detection",
|
|
title="MLSD Detection",
|
|
tags=["controlnet", "mlsd", "edge"],
|
|
category="controlnet",
|
|
version="1.0.0",
|
|
)
|
|
class MLSDDetectionInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Generates an line segment map using MLSD."""
|
|
|
|
image: ImageField = InputField(description="The image to process")
|
|
score_threshold: float = InputField(
|
|
default=0.1, ge=0, description="The threshold used to score points when determining line segments"
|
|
)
|
|
distance_threshold: float = InputField(
|
|
default=20.0,
|
|
ge=0,
|
|
description="Threshold for including a line segment - lines shorter than this distance will be discarded",
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name, "RGB")
|
|
loaded_model = context.models.load_remote_model(MLSDDetector.get_model_url(), MLSDDetector.load_model)
|
|
|
|
with loaded_model as model:
|
|
assert isinstance(model, MobileV2_MLSD_Large)
|
|
detector = MLSDDetector(model)
|
|
edge_map = detector.run(image, self.score_threshold, self.distance_threshold)
|
|
|
|
image_dto = context.images.save(image=edge_map)
|
|
return ImageOutput.build(image_dto)
|