psychedelicious b3d60bd56a feat(nodes): add NormalMapInvocation
Similar to the existing node, but without any resizing and with a revised model loading API that uses the model manager.

All code related to the invocation now lives in the Invoke repo. Unfortunately, this includes a whole git repo for EfficientNet. I believe we could use the package `timm` instead of this, but it's beyond me.
2024-09-11 08:12:48 -04:00

32 lines
1.3 KiB
Python

from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.normal_bae import NormalMapDetector
from invokeai.backend.image_util.normal_bae.nets.NNET import NNET
@invocation(
"normal_map",
title="Normal Map",
tags=["controlnet", "normal"],
category="controlnet",
version="1.0.0",
)
class NormalMapInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates a normal map."""
image: ImageField = InputField(description="The image to process")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, "RGB")
loaded_model = context.models.load_remote_model(NormalMapDetector.get_model_url(), NormalMapDetector.load_model)
with loaded_model as model:
assert isinstance(model, NNET)
detector = NormalMapDetector(model)
normal_map = detector.run(image=image)
image_dto = context.images.save(image=normal_map)
return ImageOutput.build(image_dto)