35 lines
1.1 KiB
Python

from typing import Dict, Optional
import torch
from invokeai.backend.patches.layers.lora_layer_base import LoRALayerBase
from invokeai.backend.util.calc_tensor_size import calc_tensor_size
class FullLayer(LoRALayerBase):
def __init__(self, weight: torch.Tensor, bias: Optional[torch.Tensor]):
super().__init__(alpha=None, bias=bias)
self.weight = torch.nn.Parameter(weight)
@classmethod
def from_state_dict_values(
cls,
values: Dict[str, torch.Tensor],
):
layer = cls(weight=values["diff"], bias=values.get("diff_b", None))
cls.warn_on_unhandled_keys(values=values, handled_keys={"diff", "diff_b"})
return layer
def _rank(self) -> int | None:
return None
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
return self.weight
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
def calc_size(self) -> int:
return super().calc_size() + calc_tensor_size(self.weight)