mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-04-04 22:43:40 +08:00
99 lines
3.2 KiB
Python
99 lines
3.2 KiB
Python
from typing import Dict
|
|
|
|
import torch
|
|
|
|
from invokeai.backend.patches.layers.lora_layer_base import LoRALayerBase
|
|
from invokeai.backend.util.calc_tensor_size import calc_tensors_size
|
|
|
|
|
|
class LoHALayer(LoRALayerBase):
|
|
"""LoHA LyCoris layer.
|
|
|
|
Example model for testing this layer type: https://civitai.com/models/27397/loha-renoir-the-dappled-light-style
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
w1_a: torch.Tensor,
|
|
w1_b: torch.Tensor,
|
|
w2_a: torch.Tensor,
|
|
w2_b: torch.Tensor,
|
|
t1: torch.Tensor | None,
|
|
t2: torch.Tensor | None,
|
|
alpha: float | None,
|
|
bias: torch.Tensor | None,
|
|
):
|
|
super().__init__(alpha=alpha, bias=bias)
|
|
self.w1_a = w1_a
|
|
self.w1_b = w1_b
|
|
self.w2_a = w2_a
|
|
self.w2_b = w2_b
|
|
self.t1 = t1
|
|
self.t2 = t2
|
|
assert (self.t1 is None) == (self.t2 is None)
|
|
|
|
def _rank(self) -> int | None:
|
|
return self.w1_b.shape[0]
|
|
|
|
@classmethod
|
|
def from_state_dict_values(
|
|
cls,
|
|
values: Dict[str, torch.Tensor],
|
|
):
|
|
alpha = cls._parse_alpha(values.get("alpha", None))
|
|
bias = cls._parse_bias(
|
|
values.get("bias_indices", None), values.get("bias_values", None), values.get("bias_size", None)
|
|
)
|
|
layer = cls(
|
|
w1_a=values["hada_w1_a"],
|
|
w1_b=values["hada_w1_b"],
|
|
w2_a=values["hada_w2_a"],
|
|
w2_b=values["hada_w2_b"],
|
|
t1=values.get("hada_t1", None),
|
|
t2=values.get("hada_t2", None),
|
|
alpha=alpha,
|
|
bias=bias,
|
|
)
|
|
|
|
cls.warn_on_unhandled_keys(
|
|
values=values,
|
|
handled_keys={
|
|
# Default keys.
|
|
"alpha",
|
|
"bias_indices",
|
|
"bias_values",
|
|
"bias_size",
|
|
# Layer-specific keys.
|
|
"hada_w1_a",
|
|
"hada_w1_b",
|
|
"hada_w2_a",
|
|
"hada_w2_b",
|
|
"hada_t1",
|
|
"hada_t2",
|
|
},
|
|
)
|
|
|
|
return layer
|
|
|
|
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
|
if self.t1 is None:
|
|
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
|
|
else:
|
|
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
|
|
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
|
|
weight = rebuild1 * rebuild2
|
|
|
|
return weight
|
|
|
|
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
|
super().to(device=device, dtype=dtype)
|
|
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
|
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
|
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
|
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
|
self.t1 = self.t1.to(device=device, dtype=dtype) if self.t1 is not None else self.t1
|
|
self.t2 = self.t2.to(device=device, dtype=dtype) if self.t2 is not None else self.t2
|
|
|
|
def calc_size(self) -> int:
|
|
return super().calc_size() + calc_tensors_size([self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2])
|