128 lines
4.3 KiB
Python

from typing import Dict
import torch
from invokeai.backend.patches.layers.lora_layer_base import LoRALayerBase
from invokeai.backend.util.calc_tensor_size import calc_tensors_size
class LoKRLayer(LoRALayerBase):
"""LoKR LyCoris layer.
Example model for testing this layer type: https://civitai.com/models/346747/lokrnekopara-allgirl-for-jru2
"""
def __init__(
self,
w1: torch.Tensor | None,
w1_a: torch.Tensor | None,
w1_b: torch.Tensor | None,
w2: torch.Tensor | None,
w2_a: torch.Tensor | None,
w2_b: torch.Tensor | None,
t2: torch.Tensor | None,
alpha: float | None,
bias: torch.Tensor | None,
):
super().__init__(alpha=alpha, bias=bias)
self.w1 = w1
self.w1_a = w1_a
self.w1_b = w1_b
self.w2 = w2
self.w2_a = w2_a
self.w2_b = w2_b
self.t2 = t2
# Validate parameters.
assert (self.w1 is None) != (self.w1_a is None)
assert (self.w1_a is None) == (self.w1_b is None)
assert (self.w2 is None) != (self.w2_a is None)
assert (self.w2_a is None) == (self.w2_b is None)
def _rank(self) -> int | None:
if self.w1_b is not None:
return self.w1_b.shape[0]
elif self.w2_b is not None:
return self.w2_b.shape[0]
else:
return None
@classmethod
def from_state_dict_values(
cls,
values: Dict[str, torch.Tensor],
):
alpha = cls._parse_alpha(values.get("alpha", None))
bias = cls._parse_bias(
values.get("bias_indices", None), values.get("bias_values", None), values.get("bias_size", None)
)
layer = cls(
w1=values.get("lokr_w1", None),
w1_a=values.get("lokr_w1_a", None),
w1_b=values.get("lokr_w1_b", None),
w2=values.get("lokr_w2", None),
w2_a=values.get("lokr_w2_a", None),
w2_b=values.get("lokr_w2_b", None),
t2=values.get("lokr_t2", None),
alpha=alpha,
bias=bias,
)
cls.warn_on_unhandled_keys(
values,
{
# Default keys.
"alpha",
"bias_indices",
"bias_values",
"bias_size",
# Layer-specific keys.
"lokr_w1",
"lokr_w1_a",
"lokr_w1_b",
"lokr_w2",
"lokr_w2_a",
"lokr_w2_b",
"lokr_t2",
},
)
return layer
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
w1 = self.w1
if w1 is None:
assert self.w1_a is not None
assert self.w1_b is not None
w1 = self.w1_a @ self.w1_b
w2 = self.w2
if w2 is None:
if self.t2 is None:
assert self.w2_a is not None
assert self.w2_b is not None
w2 = self.w2_a @ self.w2_b
else:
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
weight = torch.kron(w1, w2)
return weight
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
super().to(device=device, dtype=dtype)
self.w1 = self.w1.to(device=device, dtype=dtype) if self.w1 is not None else self.w1
self.w1_a = self.w1_a.to(device=device, dtype=dtype) if self.w1_a is not None else self.w1_a
self.w1_b = self.w1_b.to(device=device, dtype=dtype) if self.w1_b is not None else self.w1_b
self.w2 = self.w2.to(device=device, dtype=dtype) if self.w2 is not None else self.w2
self.w2_a = self.w2_a.to(device=device, dtype=dtype) if self.w2_a is not None else self.w2_a
self.w2_b = self.w2_b.to(device=device, dtype=dtype) if self.w2_b is not None else self.w2_b
self.t2 = self.t2.to(device=device, dtype=dtype) if self.t2 is not None else self.t2
def calc_size(self) -> int:
return super().calc_size() + calc_tensors_size(
[self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]
)