mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-04-04 22:43:40 +08:00
80 lines
2.5 KiB
Python
80 lines
2.5 KiB
Python
from typing import Dict, Optional
|
|
|
|
import torch
|
|
|
|
from invokeai.backend.patches.layers.lora_layer_base import LoRALayerBase
|
|
from invokeai.backend.util.calc_tensor_size import calc_tensors_size
|
|
|
|
|
|
class LoRALayer(LoRALayerBase):
|
|
def __init__(
|
|
self,
|
|
up: torch.Tensor,
|
|
mid: Optional[torch.Tensor],
|
|
down: torch.Tensor,
|
|
alpha: float | None,
|
|
bias: Optional[torch.Tensor],
|
|
):
|
|
super().__init__(alpha, bias)
|
|
self.up = up
|
|
self.mid = mid
|
|
self.down = down
|
|
|
|
@classmethod
|
|
def from_state_dict_values(
|
|
cls,
|
|
values: Dict[str, torch.Tensor],
|
|
):
|
|
alpha = cls._parse_alpha(values.get("alpha", None))
|
|
bias = cls._parse_bias(
|
|
values.get("bias_indices", None), values.get("bias_values", None), values.get("bias_size", None)
|
|
)
|
|
|
|
layer = cls(
|
|
up=values["lora_up.weight"],
|
|
down=values["lora_down.weight"],
|
|
mid=values.get("lora_mid.weight", None),
|
|
alpha=alpha,
|
|
bias=bias,
|
|
)
|
|
|
|
cls.warn_on_unhandled_keys(
|
|
values=values,
|
|
handled_keys={
|
|
# Default keys.
|
|
"alpha",
|
|
"bias_indices",
|
|
"bias_values",
|
|
"bias_size",
|
|
# Layer-specific keys.
|
|
"lora_up.weight",
|
|
"lora_down.weight",
|
|
"lora_mid.weight",
|
|
},
|
|
)
|
|
|
|
return layer
|
|
|
|
def _rank(self) -> int:
|
|
return self.down.shape[0]
|
|
|
|
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
|
if self.mid is not None:
|
|
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
|
|
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
|
|
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
|
|
else:
|
|
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
|
|
|
|
return weight
|
|
|
|
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
|
super().to(device=device, dtype=dtype)
|
|
self.up = self.up.to(device=device, dtype=dtype)
|
|
if self.mid is not None:
|
|
self.mid = self.mid.to(device=device, dtype=dtype)
|
|
self.down = self.down.to(device=device, dtype=dtype)
|
|
|
|
def calc_size(self) -> int:
|
|
return super().calc_size() + calc_tensors_size([self.up, self.mid, self.down])
|