2025-03-28 10:35:13 +11:00

682 lines
27 KiB
Python

# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
Configuration definitions for image generation models.
Typical usage:
from invokeai.backend.model_manager import ModelConfigFactory
raw = dict(path='models/sd-1/main/foo.ckpt',
name='foo',
base='sd-1',
type='main',
config='configs/stable-diffusion/v1-inference.yaml',
variant='normal',
format='checkpoint'
)
config = ModelConfigFactory.make_config(raw)
print(config.name)
Validation errors will raise an InvalidModelConfigException error.
"""
# pyright: reportIncompatibleVariableOverride=false
import json
import logging
import time
from abc import ABC, abstractmethod
from enum import Enum
from inspect import isabstract
from pathlib import Path
from typing import ClassVar, Literal, Optional, TypeAlias, Union
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
from typing_extensions import Annotated, Any, Dict
from invokeai.app.util.misc import uuid_string
from invokeai.backend.model_hash.hash_validator import validate_hash
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS
from invokeai.backend.model_manager.model_on_disk import ModelOnDisk
from invokeai.backend.model_manager.taxonomy import (
AnyVariant,
BaseModelType,
ClipVariantType,
FluxLoRAFormat,
ModelFormat,
ModelRepoVariant,
ModelSourceType,
ModelType,
ModelVariantType,
SchedulerPredictionType,
SubModelType,
)
from invokeai.backend.model_manager.util.model_util import lora_token_vector_length
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
logger = logging.getLogger(__name__)
class InvalidModelConfigException(Exception):
"""Exception for when config parser doesn't recognize this combination of model type and format."""
pass
DEFAULTS_PRECISION = Literal["fp16", "fp32"]
class SubmodelDefinition(BaseModel):
path_or_prefix: str
model_type: ModelType
variant: AnyVariant = None
model_config = ConfigDict(protected_namespaces=())
class MainModelDefaultSettings(BaseModel):
vae: str | None = Field(default=None, description="Default VAE for this model (model key)")
vae_precision: DEFAULTS_PRECISION | None = Field(default=None, description="Default VAE precision for this model")
scheduler: SCHEDULER_NAME_VALUES | None = Field(default=None, description="Default scheduler for this model")
steps: int | None = Field(default=None, gt=0, description="Default number of steps for this model")
cfg_scale: float | None = Field(default=None, ge=1, description="Default CFG Scale for this model")
cfg_rescale_multiplier: float | None = Field(
default=None, ge=0, lt=1, description="Default CFG Rescale Multiplier for this model"
)
width: int | None = Field(default=None, multiple_of=8, ge=64, description="Default width for this model")
height: int | None = Field(default=None, multiple_of=8, ge=64, description="Default height for this model")
guidance: float | None = Field(default=None, ge=1, description="Default Guidance for this model")
model_config = ConfigDict(extra="forbid")
class ControlAdapterDefaultSettings(BaseModel):
# This could be narrowed to controlnet processor nodes, but they change. Leaving this a string is safer.
preprocessor: str | None
model_config = ConfigDict(extra="forbid")
class MatchSpeed(int, Enum):
"""Represents the estimated runtime speed of a config's 'matches' method."""
FAST = 0
MED = 1
SLOW = 2
class ModelConfigBase(ABC, BaseModel):
"""
Abstract Base class for model configurations.
To create a new config type, inherit from this class and implement its interface:
- (mandatory) override methods 'matches' and 'parse'
- (mandatory) define fields 'type' and 'format' as class attributes
- (optional) override method 'get_tag'
- (optional) override field _MATCH_SPEED
See MinimalConfigExample in test_model_probe.py for an example implementation.
"""
@staticmethod
def json_schema_extra(schema: dict[str, Any]) -> None:
schema["required"].extend(["key", "type", "format"])
model_config = ConfigDict(validate_assignment=True, json_schema_extra=json_schema_extra)
key: str = Field(description="A unique key for this model.", default_factory=uuid_string)
hash: str = Field(description="The hash of the model file(s).")
path: str = Field(
description="Path to the model on the filesystem. Relative paths are relative to the Invoke root directory."
)
name: str = Field(description="Name of the model.")
type: ModelType = Field(description="Model type")
format: ModelFormat = Field(description="Model format")
base: BaseModelType = Field(description="The base model.")
source: str = Field(description="The original source of the model (path, URL or repo_id).")
source_type: ModelSourceType = Field(description="The type of source")
description: Optional[str] = Field(description="Model description", default=None)
source_api_response: Optional[str] = Field(
description="The original API response from the source, as stringified JSON.", default=None
)
cover_image: Optional[str] = Field(description="Url for image to preview model", default=None)
submodels: Optional[Dict[SubModelType, SubmodelDefinition]] = Field(
description="Loadable submodels in this model", default=None
)
_USING_LEGACY_PROBE: ClassVar[set] = set()
_USING_CLASSIFY_API: ClassVar[set] = set()
_MATCH_SPEED: ClassVar[MatchSpeed] = MatchSpeed.MED
def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
if issubclass(cls, LegacyProbeMixin):
ModelConfigBase._USING_LEGACY_PROBE.add(cls)
else:
ModelConfigBase._USING_CLASSIFY_API.add(cls)
@staticmethod
def all_config_classes():
subclasses = ModelConfigBase._USING_LEGACY_PROBE | ModelConfigBase._USING_CLASSIFY_API
concrete = {cls for cls in subclasses if not isabstract(cls)}
return concrete
@staticmethod
def classify(model_path: Path, hash_algo: HASHING_ALGORITHMS = "blake3_single", **overrides):
"""
Returns the best matching ModelConfig instance from a model's file/folder path.
Raises InvalidModelConfigException if no valid configuration is found.
Created to deprecate ModelProbe.probe
"""
candidates = ModelConfigBase._USING_CLASSIFY_API
sorted_by_match_speed = sorted(candidates, key=lambda cls: (cls._MATCH_SPEED, cls.__name__))
mod = ModelOnDisk(model_path, hash_algo)
for config_cls in sorted_by_match_speed:
try:
if not config_cls.matches(mod):
continue
except Exception as e:
logger.warning(f"Unexpected exception while matching {mod.name} to '{config_cls.__name__}': {e}")
continue
else:
return config_cls.from_model_on_disk(mod, **overrides)
raise InvalidModelConfigException("No valid config found")
@classmethod
def get_tag(cls) -> Tag:
type = cls.model_fields["type"].default.value
format = cls.model_fields["format"].default.value
return Tag(f"{type}.{format}")
@classmethod
@abstractmethod
def parse(cls, mod: ModelOnDisk) -> dict[str, Any]:
"""Returns a dictionary with the fields needed to construct the model.
Raises InvalidModelConfigException if the model is invalid.
"""
pass
@classmethod
@abstractmethod
def matches(cls, mod: ModelOnDisk) -> bool:
"""Performs a quick check to determine if the config matches the model.
This doesn't need to be a perfect test - the aim is to eliminate unlikely matches quickly before parsing."""
pass
@staticmethod
def cast_overrides(overrides: dict[str, Any]):
"""Casts user overrides from str to Enum"""
if "type" in overrides:
overrides["type"] = ModelType(overrides["type"])
if "format" in overrides:
overrides["format"] = ModelFormat(overrides["format"])
if "base" in overrides:
overrides["base"] = BaseModelType(overrides["base"])
if "source_type" in overrides:
overrides["source_type"] = ModelSourceType(overrides["source_type"])
if "variant" in overrides:
overrides["variant"] = ModelVariantType(overrides["variant"])
@classmethod
def from_model_on_disk(cls, mod: ModelOnDisk, **overrides):
"""Creates an instance of this config or raises InvalidModelConfigException."""
fields = cls.parse(mod)
cls.cast_overrides(overrides)
fields.update(overrides)
type = fields.get("type") or cls.model_fields["type"].default
base = fields.get("base") or cls.model_fields["base"].default
fields["path"] = mod.path.as_posix()
fields["source"] = fields.get("source") or fields["path"]
fields["source_type"] = fields.get("source_type") or ModelSourceType.Path
fields["name"] = name = fields.get("name") or mod.name
fields["hash"] = fields.get("hash") or mod.hash()
fields["key"] = fields.get("key") or uuid_string()
fields["description"] = fields.get("description") or f"{base.value} {type.value} model {name}"
fields["repo_variant"] = fields.get("repo_variant") or mod.repo_variant()
return cls(**fields)
class LegacyProbeMixin:
"""Mixin for classes using the legacy probe for model classification."""
@classmethod
def matches(cls, *args, **kwargs):
raise NotImplementedError(f"Method 'matches' not implemented for {cls.__name__}")
@classmethod
def parse(cls, *args, **kwargs):
raise NotImplementedError(f"Method 'parse' not implemented for {cls.__name__}")
class CheckpointConfigBase(ABC, BaseModel):
"""Base class for checkpoint-style models."""
format: Literal[ModelFormat.Checkpoint, ModelFormat.BnbQuantizednf4b, ModelFormat.GGUFQuantized] = Field(
description="Format of the provided checkpoint model", default=ModelFormat.Checkpoint
)
config_path: str = Field(description="path to the checkpoint model config file")
converted_at: Optional[float] = Field(
description="When this model was last converted to diffusers", default_factory=time.time
)
class DiffusersConfigBase(ABC, BaseModel):
"""Base class for diffusers-style models."""
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
repo_variant: Optional[ModelRepoVariant] = ModelRepoVariant.Default
class LoRAConfigBase(ABC, BaseModel):
"""Base class for LoRA models."""
type: Literal[ModelType.LoRA] = ModelType.LoRA
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
@classmethod
def flux_lora_format(cls, mod: ModelOnDisk):
key = "FLUX_LORA_FORMAT"
if key in mod.cache:
return mod.cache[key]
from invokeai.backend.patches.lora_conversions.formats import flux_format_from_state_dict
sd = mod.load_state_dict(mod.path)
value = flux_format_from_state_dict(sd)
mod.cache[key] = value
return value
@classmethod
def base_model(cls, mod: ModelOnDisk) -> BaseModelType:
if cls.flux_lora_format(mod):
return BaseModelType.Flux
state_dict = mod.load_state_dict()
# If we've gotten here, we assume that the model is a Stable Diffusion model
token_vector_length = lora_token_vector_length(state_dict)
if token_vector_length == 768:
return BaseModelType.StableDiffusion1
elif token_vector_length == 1024:
return BaseModelType.StableDiffusion2
elif token_vector_length == 1280:
return BaseModelType.StableDiffusionXL # recognizes format at https://civitai.com/models/224641
elif token_vector_length == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException("Unknown LoRA type")
class T5EncoderConfigBase(ABC, BaseModel):
"""Base class for diffusers-style models."""
type: Literal[ModelType.T5Encoder] = ModelType.T5Encoder
class T5EncoderConfig(T5EncoderConfigBase, LegacyProbeMixin, ModelConfigBase):
format: Literal[ModelFormat.T5Encoder] = ModelFormat.T5Encoder
class T5EncoderBnbQuantizedLlmInt8bConfig(T5EncoderConfigBase, LegacyProbeMixin, ModelConfigBase):
format: Literal[ModelFormat.BnbQuantizedLlmInt8b] = ModelFormat.BnbQuantizedLlmInt8b
class LoRALyCORISConfig(LoRAConfigBase, ModelConfigBase):
"""Model config for LoRA/Lycoris models."""
format: Literal[ModelFormat.LyCORIS] = ModelFormat.LyCORIS
@classmethod
def matches(cls, mod: ModelOnDisk) -> bool:
if mod.path.is_dir():
return False
# Avoid false positive match against ControlLoRA and Diffusers
if cls.flux_lora_format(mod) in [FluxLoRAFormat.Control, FluxLoRAFormat.Diffusers]:
return False
state_dict = mod.load_state_dict()
for key in state_dict.keys():
if key.startswith(("lora_te_", "lora_unet_", "lora_te1_", "lora_te2_", "lora_transformer_")):
return True
# "lora_A.weight" and "lora_B.weight" are associated with models in PEFT format. We don't support all PEFT
# LoRA models, but as of the time of writing, we support Diffusers FLUX PEFT LoRA models.
if key.endswith(("to_k_lora.up.weight", "to_q_lora.down.weight", "lora_A.weight", "lora_B.weight")):
return True
return False
@classmethod
def parse(cls, mod: ModelOnDisk) -> dict[str, Any]:
return {
"base": cls.base_model(mod),
}
class ControlAdapterConfigBase(ABC, BaseModel):
default_settings: Optional[ControlAdapterDefaultSettings] = Field(
description="Default settings for this model", default=None
)
class ControlLoRALyCORISConfig(ControlAdapterConfigBase, LegacyProbeMixin, ModelConfigBase):
"""Model config for Control LoRA models."""
type: Literal[ModelType.ControlLoRa] = ModelType.ControlLoRa
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
format: Literal[ModelFormat.LyCORIS] = ModelFormat.LyCORIS
class ControlLoRADiffusersConfig(ControlAdapterConfigBase, LegacyProbeMixin, ModelConfigBase):
"""Model config for Control LoRA models."""
type: Literal[ModelType.ControlLoRa] = ModelType.ControlLoRa
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
class LoRADiffusersConfig(LoRAConfigBase, ModelConfigBase):
"""Model config for LoRA/Diffusers models."""
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@classmethod
def matches(cls, mod: ModelOnDisk) -> bool:
if mod.path.is_file():
return cls.flux_lora_format(mod) == FluxLoRAFormat.Diffusers
suffixes = ["bin", "safetensors"]
weight_files = [mod.path / f"pytorch_lora_weights.{sfx}" for sfx in suffixes]
return any(wf.exists() for wf in weight_files)
@classmethod
def parse(cls, mod: ModelOnDisk) -> dict[str, Any]:
return {
"base": cls.base_model(mod),
}
class VAECheckpointConfig(CheckpointConfigBase, LegacyProbeMixin, ModelConfigBase):
"""Model config for standalone VAE models."""
type: Literal[ModelType.VAE] = ModelType.VAE
class VAEDiffusersConfig(LegacyProbeMixin, ModelConfigBase):
"""Model config for standalone VAE models (diffusers version)."""
type: Literal[ModelType.VAE] = ModelType.VAE
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
class ControlNetDiffusersConfig(DiffusersConfigBase, ControlAdapterConfigBase, LegacyProbeMixin, ModelConfigBase):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
class ControlNetCheckpointConfig(CheckpointConfigBase, ControlAdapterConfigBase, LegacyProbeMixin, ModelConfigBase):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
class TextualInversionFileConfig(LegacyProbeMixin, ModelConfigBase):
"""Model config for textual inversion embeddings."""
type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion
format: Literal[ModelFormat.EmbeddingFile] = ModelFormat.EmbeddingFile
class TextualInversionFolderConfig(LegacyProbeMixin, ModelConfigBase):
"""Model config for textual inversion embeddings."""
type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion
format: Literal[ModelFormat.EmbeddingFolder] = ModelFormat.EmbeddingFolder
class MainConfigBase(ABC, BaseModel):
type: Literal[ModelType.Main] = ModelType.Main
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
default_settings: Optional[MainModelDefaultSettings] = Field(
description="Default settings for this model", default=None
)
variant: AnyVariant = ModelVariantType.Normal
class MainCheckpointConfig(CheckpointConfigBase, MainConfigBase, LegacyProbeMixin, ModelConfigBase):
"""Model config for main checkpoint models."""
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
class MainBnbQuantized4bCheckpointConfig(CheckpointConfigBase, MainConfigBase, LegacyProbeMixin, ModelConfigBase):
"""Model config for main checkpoint models."""
format: Literal[ModelFormat.BnbQuantizednf4b] = ModelFormat.BnbQuantizednf4b
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
class MainGGUFCheckpointConfig(CheckpointConfigBase, MainConfigBase, LegacyProbeMixin, ModelConfigBase):
"""Model config for main checkpoint models."""
format: Literal[ModelFormat.GGUFQuantized] = ModelFormat.GGUFQuantized
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
class MainDiffusersConfig(DiffusersConfigBase, MainConfigBase, LegacyProbeMixin, ModelConfigBase):
"""Model config for main diffusers models."""
pass
class IPAdapterConfigBase(ABC, BaseModel):
type: Literal[ModelType.IPAdapter] = ModelType.IPAdapter
class IPAdapterInvokeAIConfig(IPAdapterConfigBase, LegacyProbeMixin, ModelConfigBase):
"""Model config for IP Adapter diffusers format models."""
# TODO(ryand): Should we deprecate this field? From what I can tell, it hasn't been probed correctly for a long
# time. Need to go through the history to make sure I'm understanding this fully.
image_encoder_model_id: str
format: Literal[ModelFormat.InvokeAI] = ModelFormat.InvokeAI
class IPAdapterCheckpointConfig(IPAdapterConfigBase, LegacyProbeMixin, ModelConfigBase):
"""Model config for IP Adapter checkpoint format models."""
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
class CLIPEmbedDiffusersConfig(DiffusersConfigBase):
"""Model config for Clip Embeddings."""
variant: ClipVariantType = Field(description="Clip variant for this model")
type: Literal[ModelType.CLIPEmbed] = ModelType.CLIPEmbed
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
class CLIPGEmbedDiffusersConfig(CLIPEmbedDiffusersConfig, LegacyProbeMixin, ModelConfigBase):
"""Model config for CLIP-G Embeddings."""
variant: Literal[ClipVariantType.G] = ClipVariantType.G
@classmethod
def get_tag(cls) -> Tag:
return Tag(f"{ModelType.CLIPEmbed.value}.{ModelFormat.Diffusers.value}.{ClipVariantType.G.value}")
class CLIPLEmbedDiffusersConfig(CLIPEmbedDiffusersConfig, LegacyProbeMixin, ModelConfigBase):
"""Model config for CLIP-L Embeddings."""
variant: Literal[ClipVariantType.L] = ClipVariantType.L
@classmethod
def get_tag(cls) -> Tag:
return Tag(f"{ModelType.CLIPEmbed.value}.{ModelFormat.Diffusers.value}.{ClipVariantType.L.value}")
class CLIPVisionDiffusersConfig(DiffusersConfigBase, LegacyProbeMixin, ModelConfigBase):
"""Model config for CLIPVision."""
type: Literal[ModelType.CLIPVision] = ModelType.CLIPVision
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
class T2IAdapterConfig(DiffusersConfigBase, ControlAdapterConfigBase, LegacyProbeMixin, ModelConfigBase):
"""Model config for T2I."""
type: Literal[ModelType.T2IAdapter] = ModelType.T2IAdapter
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
class SpandrelImageToImageConfig(LegacyProbeMixin, ModelConfigBase):
"""Model config for Spandrel Image to Image models."""
_MATCH_SPEED: ClassVar[MatchSpeed] = MatchSpeed.SLOW # requires loading the model from disk
type: Literal[ModelType.SpandrelImageToImage] = ModelType.SpandrelImageToImage
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
class SigLIPConfig(DiffusersConfigBase, LegacyProbeMixin, ModelConfigBase):
"""Model config for SigLIP."""
type: Literal[ModelType.SigLIP] = ModelType.SigLIP
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
class FluxReduxConfig(LegacyProbeMixin, ModelConfigBase):
"""Model config for FLUX Tools Redux model."""
type: Literal[ModelType.FluxRedux] = ModelType.FluxRedux
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
class LlavaOnevisionConfig(DiffusersConfigBase, ModelConfigBase):
"""Model config for Llava Onevision models."""
type: Literal[ModelType.LlavaOnevision] = ModelType.LlavaOnevision
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@classmethod
def matches(cls, mod: ModelOnDisk) -> bool:
if mod.path.is_file():
return False
config_path = mod.path / "config.json"
try:
with open(config_path, "r") as file:
config = json.load(file)
except FileNotFoundError:
return False
architectures = config.get("architectures")
return architectures and architectures[0] == "LlavaOnevisionForConditionalGeneration"
@classmethod
def parse(cls, mod: ModelOnDisk) -> dict[str, Any]:
return {
"base": BaseModelType.Any,
"variant": ModelVariantType.Normal,
}
def get_model_discriminator_value(v: Any) -> str:
"""
Computes the discriminator value for a model config.
https://docs.pydantic.dev/latest/concepts/unions/#discriminated-unions-with-callable-discriminator
"""
format_ = type_ = variant_ = None
if isinstance(v, dict):
format_ = v.get("format")
if isinstance(format_, Enum):
format_ = format_.value
type_ = v.get("type")
if isinstance(type_, Enum):
type_ = type_.value
variant_ = v.get("variant")
if isinstance(variant_, Enum):
variant_ = variant_.value
else:
format_ = v.format.value
type_ = v.type.value
variant_ = getattr(v, "variant", None)
if variant_:
variant_ = variant_.value
# Ideally, each config would be uniquely identified with a combination of fields
# i.e. (type, format, variant) without any special cases. Alas...
# Previously, CLIPEmbed did not have any variants, meaning older database entries lack a variant field.
# To maintain compatibility, we default to ClipVariantType.L in this case.
if type_ == ModelType.CLIPEmbed.value and format_ == ModelFormat.Diffusers.value:
variant_ = variant_ or ClipVariantType.L.value
return f"{type_}.{format_}.{variant_}"
return f"{type_}.{format_}"
# The types are listed explicitly because IDEs/LSPs can't identify the correct types
# when AnyModelConfig is constructed dynamically using ModelConfigBase.all_config_classes
AnyModelConfig = Annotated[
Union[
Annotated[MainDiffusersConfig, MainDiffusersConfig.get_tag()],
Annotated[MainCheckpointConfig, MainCheckpointConfig.get_tag()],
Annotated[MainBnbQuantized4bCheckpointConfig, MainBnbQuantized4bCheckpointConfig.get_tag()],
Annotated[MainGGUFCheckpointConfig, MainGGUFCheckpointConfig.get_tag()],
Annotated[VAEDiffusersConfig, VAEDiffusersConfig.get_tag()],
Annotated[VAECheckpointConfig, VAECheckpointConfig.get_tag()],
Annotated[ControlNetDiffusersConfig, ControlNetDiffusersConfig.get_tag()],
Annotated[ControlNetCheckpointConfig, ControlNetCheckpointConfig.get_tag()],
Annotated[LoRALyCORISConfig, LoRALyCORISConfig.get_tag()],
Annotated[ControlLoRALyCORISConfig, ControlLoRALyCORISConfig.get_tag()],
Annotated[ControlLoRADiffusersConfig, ControlLoRADiffusersConfig.get_tag()],
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
Annotated[T5EncoderConfig, T5EncoderConfig.get_tag()],
Annotated[T5EncoderBnbQuantizedLlmInt8bConfig, T5EncoderBnbQuantizedLlmInt8bConfig.get_tag()],
Annotated[TextualInversionFileConfig, TextualInversionFileConfig.get_tag()],
Annotated[TextualInversionFolderConfig, TextualInversionFolderConfig.get_tag()],
Annotated[IPAdapterInvokeAIConfig, IPAdapterInvokeAIConfig.get_tag()],
Annotated[IPAdapterCheckpointConfig, IPAdapterCheckpointConfig.get_tag()],
Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()],
Annotated[SpandrelImageToImageConfig, SpandrelImageToImageConfig.get_tag()],
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
Annotated[CLIPLEmbedDiffusersConfig, CLIPLEmbedDiffusersConfig.get_tag()],
Annotated[CLIPGEmbedDiffusersConfig, CLIPGEmbedDiffusersConfig.get_tag()],
Annotated[SigLIPConfig, SigLIPConfig.get_tag()],
Annotated[FluxReduxConfig, FluxReduxConfig.get_tag()],
Annotated[LlavaOnevisionConfig, LlavaOnevisionConfig.get_tag()],
],
Discriminator(get_model_discriminator_value),
]
AnyModelConfigValidator = TypeAdapter(AnyModelConfig)
AnyDefaultSettings: TypeAlias = Union[MainModelDefaultSettings, ControlAdapterDefaultSettings]
class ModelConfigFactory:
@staticmethod
def make_config(model_data: Dict[str, Any], timestamp: Optional[float] = None) -> AnyModelConfig:
"""Return the appropriate config object from raw dict values."""
model = AnyModelConfigValidator.validate_python(model_data) # type: ignore
if isinstance(model, CheckpointConfigBase) and timestamp:
model.converted_at = timestamp
validate_hash(model.hash)
return model # type: ignore