mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2025-04-04 22:43:40 +08:00
The polynomial fit isn't perfect and we end up with alpha values of 1 instead of 0 when applying the mask. This in turn causes issues on canvas where outputs aren't 100% transparent and individual layer bbox calculations are incorrect.
1332 lines
49 KiB
Python
1332 lines
49 KiB
Python
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
from typing import Literal, Optional
|
|
|
|
import cv2
|
|
import numpy
|
|
from PIL import Image, ImageChops, ImageFilter, ImageOps
|
|
|
|
from invokeai.app.invocations.baseinvocation import (
|
|
BaseInvocation,
|
|
Classification,
|
|
invocation,
|
|
)
|
|
from invokeai.app.invocations.constants import IMAGE_MODES
|
|
from invokeai.app.invocations.fields import (
|
|
BoundingBoxField,
|
|
ColorField,
|
|
FieldDescriptions,
|
|
ImageField,
|
|
InputField,
|
|
WithBoard,
|
|
WithMetadata,
|
|
)
|
|
from invokeai.app.invocations.primitives import ImageOutput
|
|
from invokeai.app.services.image_records.image_records_common import ImageCategory
|
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
|
from invokeai.app.util.misc import SEED_MAX
|
|
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
|
|
from invokeai.backend.image_util.safety_checker import SafetyChecker
|
|
|
|
|
|
@invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.1")
|
|
class ShowImageInvocation(BaseInvocation):
|
|
"""Displays a provided image using the OS image viewer, and passes it forward in the pipeline."""
|
|
|
|
image: ImageField = InputField(description="The image to show")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
image.show()
|
|
|
|
# TODO: how to handle failure?
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=self.image.image_name),
|
|
width=image.width,
|
|
height=image.height,
|
|
)
|
|
|
|
|
|
@invocation(
|
|
"blank_image",
|
|
title="Blank Image",
|
|
tags=["image"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class BlankImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Creates a blank image and forwards it to the pipeline"""
|
|
|
|
width: int = InputField(default=512, description="The width of the image")
|
|
height: int = InputField(default=512, description="The height of the image")
|
|
mode: Literal["RGB", "RGBA"] = InputField(default="RGB", description="The mode of the image")
|
|
color: ColorField = InputField(default=ColorField(r=0, g=0, b=0, a=255), description="The color of the image")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = Image.new(mode=self.mode, size=(self.width, self.height), color=self.color.tuple())
|
|
|
|
image_dto = context.images.save(image=image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"img_crop",
|
|
title="Crop Image",
|
|
tags=["image", "crop"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class ImageCropInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Crops an image to a specified box. The box can be outside of the image."""
|
|
|
|
image: ImageField = InputField(description="The image to crop")
|
|
x: int = InputField(default=0, description="The left x coordinate of the crop rectangle")
|
|
y: int = InputField(default=0, description="The top y coordinate of the crop rectangle")
|
|
width: int = InputField(default=512, gt=0, description="The width of the crop rectangle")
|
|
height: int = InputField(default=512, gt=0, description="The height of the crop rectangle")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
image_crop = Image.new(mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0))
|
|
image_crop.paste(image, (-self.x, -self.y))
|
|
|
|
image_dto = context.images.save(image=image_crop)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
invocation_type="img_pad_crop",
|
|
title="Center Pad or Crop Image",
|
|
category="image",
|
|
tags=["image", "pad", "crop"],
|
|
version="1.0.0",
|
|
)
|
|
class CenterPadCropInvocation(BaseInvocation):
|
|
"""Pad or crop an image's sides from the center by specified pixels. Positive values are outside of the image."""
|
|
|
|
image: ImageField = InputField(description="The image to crop")
|
|
left: int = InputField(
|
|
default=0,
|
|
description="Number of pixels to pad/crop from the left (negative values crop inwards, positive values pad outwards)",
|
|
)
|
|
right: int = InputField(
|
|
default=0,
|
|
description="Number of pixels to pad/crop from the right (negative values crop inwards, positive values pad outwards)",
|
|
)
|
|
top: int = InputField(
|
|
default=0,
|
|
description="Number of pixels to pad/crop from the top (negative values crop inwards, positive values pad outwards)",
|
|
)
|
|
bottom: int = InputField(
|
|
default=0,
|
|
description="Number of pixels to pad/crop from the bottom (negative values crop inwards, positive values pad outwards)",
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
# Calculate and create new image dimensions
|
|
new_width = image.width + self.right + self.left
|
|
new_height = image.height + self.top + self.bottom
|
|
image_crop = Image.new(mode="RGBA", size=(new_width, new_height), color=(0, 0, 0, 0))
|
|
|
|
# Paste new image onto input
|
|
image_crop.paste(image, (self.left, self.top))
|
|
|
|
image_dto = context.images.save(image=image_crop)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"img_paste",
|
|
title="Paste Image",
|
|
tags=["image", "paste"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class ImagePasteInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Pastes an image into another image."""
|
|
|
|
base_image: ImageField = InputField(description="The base image")
|
|
image: ImageField = InputField(description="The image to paste")
|
|
mask: Optional[ImageField] = InputField(
|
|
default=None,
|
|
description="The mask to use when pasting",
|
|
)
|
|
x: int = InputField(default=0, description="The left x coordinate at which to paste the image")
|
|
y: int = InputField(default=0, description="The top y coordinate at which to paste the image")
|
|
crop: bool = InputField(default=False, description="Crop to base image dimensions")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
base_image = context.images.get_pil(self.base_image.image_name, mode="RGBA")
|
|
image = context.images.get_pil(self.image.image_name, mode="RGBA")
|
|
mask = None
|
|
if self.mask is not None:
|
|
mask = context.images.get_pil(self.mask.image_name, mode="L")
|
|
mask = ImageOps.invert(mask)
|
|
# TODO: probably shouldn't invert mask here... should user be required to do it?
|
|
|
|
min_x = min(0, self.x)
|
|
min_y = min(0, self.y)
|
|
max_x = max(base_image.width, image.width + self.x)
|
|
max_y = max(base_image.height, image.height + self.y)
|
|
|
|
new_image = Image.new(mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0))
|
|
new_image.paste(base_image, (abs(min_x), abs(min_y)))
|
|
|
|
# Create a temporary image to paste the image with transparency
|
|
temp_image = Image.new("RGBA", new_image.size)
|
|
temp_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
|
|
new_image = Image.alpha_composite(new_image, temp_image)
|
|
|
|
if self.crop:
|
|
base_w, base_h = base_image.size
|
|
new_image = new_image.crop((abs(min_x), abs(min_y), abs(min_x) + base_w, abs(min_y) + base_h))
|
|
|
|
image_dto = context.images.save(image=new_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"tomask",
|
|
title="Mask from Alpha",
|
|
tags=["image", "mask"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class MaskFromAlphaInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Extracts the alpha channel of an image as a mask."""
|
|
|
|
image: ImageField = InputField(description="The image to create the mask from")
|
|
invert: bool = InputField(default=False, description="Whether or not to invert the mask")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
image_mask = image.split()[-1]
|
|
if self.invert:
|
|
image_mask = ImageOps.invert(image_mask)
|
|
|
|
image_dto = context.images.save(image=image_mask, image_category=ImageCategory.MASK)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"img_mul",
|
|
title="Multiply Images",
|
|
tags=["image", "multiply"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class ImageMultiplyInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Multiplies two images together using `PIL.ImageChops.multiply()`."""
|
|
|
|
image1: ImageField = InputField(description="The first image to multiply")
|
|
image2: ImageField = InputField(description="The second image to multiply")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image1 = context.images.get_pil(self.image1.image_name)
|
|
image2 = context.images.get_pil(self.image2.image_name)
|
|
|
|
multiply_image = ImageChops.multiply(image1, image2)
|
|
|
|
image_dto = context.images.save(image=multiply_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
|
|
|
|
|
|
@invocation(
|
|
"img_chan",
|
|
title="Extract Image Channel",
|
|
tags=["image", "channel"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class ImageChannelInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Gets a channel from an image."""
|
|
|
|
image: ImageField = InputField(description="The image to get the channel from")
|
|
channel: IMAGE_CHANNELS = InputField(default="A", description="The channel to get")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
channel_image = image.getchannel(self.channel)
|
|
|
|
image_dto = context.images.save(image=channel_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"img_conv",
|
|
title="Convert Image Mode",
|
|
tags=["image", "convert"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class ImageConvertInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Converts an image to a different mode."""
|
|
|
|
image: ImageField = InputField(description="The image to convert")
|
|
mode: IMAGE_MODES = InputField(default="L", description="The mode to convert to")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
converted_image = image.convert(self.mode)
|
|
|
|
image_dto = context.images.save(image=converted_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"img_blur",
|
|
title="Blur Image",
|
|
tags=["image", "blur"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class ImageBlurInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Blurs an image"""
|
|
|
|
image: ImageField = InputField(description="The image to blur")
|
|
radius: float = InputField(default=8.0, ge=0, description="The blur radius")
|
|
# Metadata
|
|
blur_type: Literal["gaussian", "box"] = InputField(default="gaussian", description="The type of blur")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name, mode="RGBA")
|
|
|
|
# Split the image into RGBA channels
|
|
r, g, b, a = image.split()
|
|
|
|
# Premultiply RGB channels by alpha
|
|
premultiplied_image = ImageChops.multiply(image, a.convert("RGBA"))
|
|
premultiplied_image.putalpha(a)
|
|
|
|
# Apply the blur
|
|
blur = (
|
|
ImageFilter.GaussianBlur(self.radius) if self.blur_type == "gaussian" else ImageFilter.BoxBlur(self.radius)
|
|
)
|
|
blurred_image = premultiplied_image.filter(blur)
|
|
|
|
# Split the blurred image into RGBA channels
|
|
r, g, b, a_orig = blurred_image.split()
|
|
|
|
# Convert to float using NumPy. float 32/64 division are much faster than float 16
|
|
r = numpy.array(r, dtype=numpy.float32)
|
|
g = numpy.array(g, dtype=numpy.float32)
|
|
b = numpy.array(b, dtype=numpy.float32)
|
|
a = numpy.array(a_orig, dtype=numpy.float32) / 255.0 # Normalize alpha to [0, 1]
|
|
|
|
# Unpremultiply RGB channels by alpha
|
|
r /= a + 1e-6 # Add a small epsilon to avoid division by zero
|
|
g /= a + 1e-6
|
|
b /= a + 1e-6
|
|
|
|
# Convert back to PIL images
|
|
r = Image.fromarray(numpy.uint8(numpy.clip(r, 0, 255)))
|
|
g = Image.fromarray(numpy.uint8(numpy.clip(g, 0, 255)))
|
|
b = Image.fromarray(numpy.uint8(numpy.clip(b, 0, 255)))
|
|
|
|
# Merge back into a single image
|
|
result_image = Image.merge("RGBA", (r, g, b, a_orig))
|
|
|
|
image_dto = context.images.save(image=result_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"unsharp_mask",
|
|
title="Unsharp Mask",
|
|
tags=["image", "unsharp_mask"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class UnsharpMaskInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Applies an unsharp mask filter to an image"""
|
|
|
|
image: ImageField = InputField(description="The image to use")
|
|
radius: float = InputField(gt=0, description="Unsharp mask radius", default=2)
|
|
strength: float = InputField(ge=0, description="Unsharp mask strength", default=50)
|
|
|
|
def pil_from_array(self, arr):
|
|
return Image.fromarray((arr * 255).astype("uint8"))
|
|
|
|
def array_from_pil(self, img):
|
|
return numpy.array(img) / 255
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
mode = image.mode
|
|
|
|
alpha_channel = image.getchannel("A") if mode == "RGBA" else None
|
|
image = image.convert("RGB")
|
|
image_blurred = self.array_from_pil(image.filter(ImageFilter.GaussianBlur(radius=self.radius)))
|
|
|
|
image = self.array_from_pil(image)
|
|
image += (image - image_blurred) * (self.strength / 100.0)
|
|
image = numpy.clip(image, 0, 1)
|
|
image = self.pil_from_array(image)
|
|
|
|
image = image.convert(mode)
|
|
|
|
# Make the image RGBA if we had a source alpha channel
|
|
if alpha_channel is not None:
|
|
image.putalpha(alpha_channel)
|
|
|
|
image_dto = context.images.save(image=image)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image.width,
|
|
height=image.height,
|
|
)
|
|
|
|
|
|
PIL_RESAMPLING_MODES = Literal[
|
|
"nearest",
|
|
"box",
|
|
"bilinear",
|
|
"hamming",
|
|
"bicubic",
|
|
"lanczos",
|
|
]
|
|
|
|
|
|
PIL_RESAMPLING_MAP = {
|
|
"nearest": Image.Resampling.NEAREST,
|
|
"box": Image.Resampling.BOX,
|
|
"bilinear": Image.Resampling.BILINEAR,
|
|
"hamming": Image.Resampling.HAMMING,
|
|
"bicubic": Image.Resampling.BICUBIC,
|
|
"lanczos": Image.Resampling.LANCZOS,
|
|
}
|
|
|
|
|
|
@invocation(
|
|
"img_resize",
|
|
title="Resize Image",
|
|
tags=["image", "resize"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class ImageResizeInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Resizes an image to specific dimensions"""
|
|
|
|
image: ImageField = InputField(description="The image to resize")
|
|
width: int = InputField(default=512, gt=0, description="The width to resize to (px)")
|
|
height: int = InputField(default=512, gt=0, description="The height to resize to (px)")
|
|
resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
|
|
|
|
resize_image = image.resize(
|
|
(self.width, self.height),
|
|
resample=resample_mode,
|
|
)
|
|
|
|
image_dto = context.images.save(image=resize_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"img_scale",
|
|
title="Scale Image",
|
|
tags=["image", "scale"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class ImageScaleInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Scales an image by a factor"""
|
|
|
|
image: ImageField = InputField(description="The image to scale")
|
|
scale_factor: float = InputField(
|
|
default=2.0,
|
|
gt=0,
|
|
description="The factor by which to scale the image",
|
|
)
|
|
resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
|
|
width = int(image.width * self.scale_factor)
|
|
height = int(image.height * self.scale_factor)
|
|
|
|
resize_image = image.resize(
|
|
(width, height),
|
|
resample=resample_mode,
|
|
)
|
|
|
|
image_dto = context.images.save(image=resize_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"img_lerp",
|
|
title="Lerp Image",
|
|
tags=["image", "lerp"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class ImageLerpInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Linear interpolation of all pixels of an image"""
|
|
|
|
image: ImageField = InputField(description="The image to lerp")
|
|
min: int = InputField(default=0, ge=0, le=255, description="The minimum output value")
|
|
max: int = InputField(default=255, ge=0, le=255, description="The maximum output value")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
image_arr = numpy.asarray(image, dtype=numpy.float32) / 255
|
|
image_arr = image_arr * (self.max - self.min) + self.min
|
|
|
|
lerp_image = Image.fromarray(numpy.uint8(image_arr))
|
|
|
|
image_dto = context.images.save(image=lerp_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"img_ilerp",
|
|
title="Inverse Lerp Image",
|
|
tags=["image", "ilerp"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class ImageInverseLerpInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Inverse linear interpolation of all pixels of an image"""
|
|
|
|
image: ImageField = InputField(description="The image to lerp")
|
|
min: int = InputField(default=0, ge=0, le=255, description="The minimum input value")
|
|
max: int = InputField(default=255, ge=0, le=255, description="The maximum input value")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
image_arr = numpy.asarray(image, dtype=numpy.float32)
|
|
image_arr = numpy.minimum(numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1) * 255 # type: ignore [assignment]
|
|
|
|
ilerp_image = Image.fromarray(numpy.uint8(image_arr))
|
|
|
|
image_dto = context.images.save(image=ilerp_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"img_nsfw",
|
|
title="Blur NSFW Image",
|
|
tags=["image", "nsfw"],
|
|
category="image",
|
|
version="1.2.3",
|
|
)
|
|
class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Add blur to NSFW-flagged images"""
|
|
|
|
image: ImageField = InputField(description="The image to check")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
logger = context.logger
|
|
logger.debug("Running NSFW checker")
|
|
image = SafetyChecker.blur_if_nsfw(image)
|
|
|
|
image_dto = context.images.save(image=image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"img_watermark",
|
|
title="Add Invisible Watermark",
|
|
tags=["image", "watermark"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class ImageWatermarkInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Add an invisible watermark to an image"""
|
|
|
|
image: ImageField = InputField(description="The image to check")
|
|
text: str = InputField(default="InvokeAI", description="Watermark text")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
new_image = InvisibleWatermark.add_watermark(image, self.text)
|
|
image_dto = context.images.save(image=new_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"mask_edge",
|
|
title="Mask Edge",
|
|
tags=["image", "mask", "inpaint"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class MaskEdgeInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Applies an edge mask to an image"""
|
|
|
|
image: ImageField = InputField(description="The image to apply the mask to")
|
|
edge_size: int = InputField(description="The size of the edge")
|
|
edge_blur: int = InputField(description="The amount of blur on the edge")
|
|
low_threshold: int = InputField(description="First threshold for the hysteresis procedure in Canny edge detection")
|
|
high_threshold: int = InputField(
|
|
description="Second threshold for the hysteresis procedure in Canny edge detection"
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
mask = context.images.get_pil(self.image.image_name).convert("L")
|
|
|
|
npimg = numpy.asarray(mask, dtype=numpy.uint8)
|
|
npgradient = numpy.uint8(255 * (1.0 - numpy.floor(numpy.abs(0.5 - numpy.float32(npimg) / 255.0) * 2.0)))
|
|
npedge = cv2.Canny(npimg, threshold1=self.low_threshold, threshold2=self.high_threshold)
|
|
npmask = npgradient + npedge
|
|
npmask = cv2.dilate(npmask, numpy.ones((3, 3), numpy.uint8), iterations=int(self.edge_size / 2))
|
|
|
|
new_mask = Image.fromarray(npmask)
|
|
|
|
if self.edge_blur > 0:
|
|
new_mask = new_mask.filter(ImageFilter.BoxBlur(self.edge_blur))
|
|
|
|
new_mask = ImageOps.invert(new_mask)
|
|
|
|
image_dto = context.images.save(image=new_mask, image_category=ImageCategory.MASK)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"mask_combine",
|
|
title="Combine Masks",
|
|
tags=["image", "mask", "multiply"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class MaskCombineInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`."""
|
|
|
|
mask1: ImageField = InputField(description="The first mask to combine")
|
|
mask2: ImageField = InputField(description="The second image to combine")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
mask1 = context.images.get_pil(self.mask1.image_name).convert("L")
|
|
mask2 = context.images.get_pil(self.mask2.image_name).convert("L")
|
|
|
|
combined_mask = ImageChops.multiply(mask1, mask2)
|
|
|
|
image_dto = context.images.save(image=combined_mask, image_category=ImageCategory.MASK)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"color_correct",
|
|
title="Color Correct",
|
|
tags=["image", "color"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class ColorCorrectInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""
|
|
Shifts the colors of a target image to match the reference image, optionally
|
|
using a mask to only color-correct certain regions of the target image.
|
|
"""
|
|
|
|
image: ImageField = InputField(description="The image to color-correct")
|
|
reference: ImageField = InputField(description="Reference image for color-correction")
|
|
mask: Optional[ImageField] = InputField(default=None, description="Mask to use when applying color-correction")
|
|
mask_blur_radius: float = InputField(default=8, description="Mask blur radius")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
pil_init_mask = None
|
|
if self.mask is not None:
|
|
pil_init_mask = context.images.get_pil(self.mask.image_name).convert("L")
|
|
|
|
init_image = context.images.get_pil(self.reference.image_name)
|
|
|
|
result = context.images.get_pil(self.image.image_name).convert("RGBA")
|
|
|
|
# if init_image is None or init_mask is None:
|
|
# return result
|
|
|
|
# Get the original alpha channel of the mask if there is one.
|
|
# Otherwise it is some other black/white image format ('1', 'L' or 'RGB')
|
|
# pil_init_mask = (
|
|
# init_mask.getchannel("A")
|
|
# if init_mask.mode == "RGBA"
|
|
# else init_mask.convert("L")
|
|
# )
|
|
pil_init_image = init_image.convert("RGBA") # Add an alpha channel if one doesn't exist
|
|
|
|
# Build an image with only visible pixels from source to use as reference for color-matching.
|
|
init_rgb_pixels = numpy.asarray(init_image.convert("RGB"), dtype=numpy.uint8)
|
|
init_a_pixels = numpy.asarray(pil_init_image.getchannel("A"), dtype=numpy.uint8)
|
|
init_mask_pixels = numpy.asarray(pil_init_mask, dtype=numpy.uint8)
|
|
|
|
# Get numpy version of result
|
|
np_image = numpy.asarray(result.convert("RGB"), dtype=numpy.uint8)
|
|
|
|
# Mask and calculate mean and standard deviation
|
|
mask_pixels = init_a_pixels * init_mask_pixels > 0
|
|
np_init_rgb_pixels_masked = init_rgb_pixels[mask_pixels, :]
|
|
np_image_masked = np_image[mask_pixels, :]
|
|
|
|
if np_init_rgb_pixels_masked.size > 0:
|
|
init_means = np_init_rgb_pixels_masked.mean(axis=0)
|
|
init_std = np_init_rgb_pixels_masked.std(axis=0)
|
|
gen_means = np_image_masked.mean(axis=0)
|
|
gen_std = np_image_masked.std(axis=0)
|
|
|
|
# Color correct
|
|
np_matched_result = np_image.copy()
|
|
np_matched_result[:, :, :] = (
|
|
(
|
|
(
|
|
(np_matched_result[:, :, :].astype(numpy.float32) - gen_means[None, None, :])
|
|
/ gen_std[None, None, :]
|
|
)
|
|
* init_std[None, None, :]
|
|
+ init_means[None, None, :]
|
|
)
|
|
.clip(0, 255)
|
|
.astype(numpy.uint8)
|
|
)
|
|
matched_result = Image.fromarray(np_matched_result, mode="RGB")
|
|
else:
|
|
matched_result = Image.fromarray(np_image, mode="RGB")
|
|
|
|
# Blur the mask out (into init image) by specified amount
|
|
if self.mask_blur_radius > 0:
|
|
nm = numpy.asarray(pil_init_mask, dtype=numpy.uint8)
|
|
inverted_nm = 255 - nm
|
|
dilation_size = int(round(self.mask_blur_radius) + 20)
|
|
dilating_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (dilation_size, dilation_size))
|
|
inverted_dilated_nm = cv2.dilate(inverted_nm, dilating_kernel)
|
|
dilated_nm = 255 - inverted_dilated_nm
|
|
nmd = cv2.erode(
|
|
dilated_nm,
|
|
kernel=numpy.ones((3, 3), dtype=numpy.uint8),
|
|
iterations=int(self.mask_blur_radius / 2),
|
|
)
|
|
pmd = Image.fromarray(nmd, mode="L")
|
|
blurred_init_mask = pmd.filter(ImageFilter.BoxBlur(self.mask_blur_radius))
|
|
else:
|
|
blurred_init_mask = pil_init_mask
|
|
|
|
multiplied_blurred_init_mask = ImageChops.multiply(blurred_init_mask, result.split()[-1])
|
|
|
|
# Paste original on color-corrected generation (using blurred mask)
|
|
matched_result.paste(init_image, (0, 0), mask=multiplied_blurred_init_mask)
|
|
|
|
image_dto = context.images.save(image=matched_result)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"img_hue_adjust",
|
|
title="Adjust Image Hue",
|
|
tags=["image", "hue"],
|
|
category="image",
|
|
version="1.2.2",
|
|
)
|
|
class ImageHueAdjustmentInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Adjusts the Hue of an image."""
|
|
|
|
image: ImageField = InputField(description="The image to adjust")
|
|
hue: int = InputField(default=0, description="The degrees by which to rotate the hue, 0-360")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
pil_image = context.images.get_pil(self.image.image_name)
|
|
|
|
# Convert image to HSV color space
|
|
hsv_image = numpy.array(pil_image.convert("HSV"))
|
|
|
|
# Convert hue from 0..360 to 0..256
|
|
hue = int(256 * ((self.hue % 360) / 360))
|
|
|
|
# Increment each hue and wrap around at 255
|
|
hsv_image[:, :, 0] = (hsv_image[:, :, 0] + hue) % 256
|
|
|
|
# Convert back to PIL format and to original color mode
|
|
pil_image = Image.fromarray(hsv_image, mode="HSV").convert("RGBA")
|
|
|
|
image_dto = context.images.save(image=pil_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
COLOR_CHANNELS = Literal[
|
|
"Red (RGBA)",
|
|
"Green (RGBA)",
|
|
"Blue (RGBA)",
|
|
"Alpha (RGBA)",
|
|
"Cyan (CMYK)",
|
|
"Magenta (CMYK)",
|
|
"Yellow (CMYK)",
|
|
"Black (CMYK)",
|
|
"Hue (HSV)",
|
|
"Saturation (HSV)",
|
|
"Value (HSV)",
|
|
"Luminosity (LAB)",
|
|
"A (LAB)",
|
|
"B (LAB)",
|
|
"Y (YCbCr)",
|
|
"Cb (YCbCr)",
|
|
"Cr (YCbCr)",
|
|
]
|
|
|
|
CHANNEL_FORMATS = {
|
|
"Red (RGBA)": ("RGBA", 0),
|
|
"Green (RGBA)": ("RGBA", 1),
|
|
"Blue (RGBA)": ("RGBA", 2),
|
|
"Alpha (RGBA)": ("RGBA", 3),
|
|
"Cyan (CMYK)": ("CMYK", 0),
|
|
"Magenta (CMYK)": ("CMYK", 1),
|
|
"Yellow (CMYK)": ("CMYK", 2),
|
|
"Black (CMYK)": ("CMYK", 3),
|
|
"Hue (HSV)": ("HSV", 0),
|
|
"Saturation (HSV)": ("HSV", 1),
|
|
"Value (HSV)": ("HSV", 2),
|
|
"Luminosity (LAB)": ("LAB", 0),
|
|
"A (LAB)": ("LAB", 1),
|
|
"B (LAB)": ("LAB", 2),
|
|
"Y (YCbCr)": ("YCbCr", 0),
|
|
"Cb (YCbCr)": ("YCbCr", 1),
|
|
"Cr (YCbCr)": ("YCbCr", 2),
|
|
}
|
|
|
|
|
|
@invocation(
|
|
"img_channel_offset",
|
|
title="Offset Image Channel",
|
|
tags=[
|
|
"image",
|
|
"offset",
|
|
"red",
|
|
"green",
|
|
"blue",
|
|
"alpha",
|
|
"cyan",
|
|
"magenta",
|
|
"yellow",
|
|
"black",
|
|
"hue",
|
|
"saturation",
|
|
"luminosity",
|
|
"value",
|
|
],
|
|
category="image",
|
|
version="1.2.3",
|
|
)
|
|
class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Add or subtract a value from a specific color channel of an image."""
|
|
|
|
image: ImageField = InputField(description="The image to adjust")
|
|
channel: COLOR_CHANNELS = InputField(description="Which channel to adjust")
|
|
offset: int = InputField(default=0, ge=-255, le=255, description="The amount to adjust the channel by")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name, "RGBA")
|
|
|
|
# extract the channel and mode from the input and reference tuple
|
|
mode = CHANNEL_FORMATS[self.channel][0]
|
|
channel_number = CHANNEL_FORMATS[self.channel][1]
|
|
|
|
# Convert PIL image to new format
|
|
converted_image = numpy.array(image.convert(mode)).astype(int)
|
|
image_channel = converted_image[:, :, channel_number]
|
|
|
|
if self.channel == "Hue (HSV)":
|
|
# loop around the values because hue is special
|
|
image_channel = (image_channel + self.offset) % 256
|
|
else:
|
|
# Adjust the value, clipping to 0..255
|
|
image_channel = numpy.clip(image_channel + self.offset, 0, 255)
|
|
|
|
# Put the channel back into the image
|
|
converted_image[:, :, channel_number] = image_channel
|
|
|
|
# Convert back to RGBA format and output
|
|
pil_image = Image.fromarray(converted_image.astype(numpy.uint8), mode=mode).convert("RGBA")
|
|
|
|
# restore the alpha channel
|
|
if self.channel != "Alpha (RGBA)":
|
|
pil_image.putalpha(image.getchannel("A"))
|
|
|
|
image_dto = context.images.save(image=pil_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"img_channel_multiply",
|
|
title="Multiply Image Channel",
|
|
tags=[
|
|
"image",
|
|
"invert",
|
|
"scale",
|
|
"multiply",
|
|
"red",
|
|
"green",
|
|
"blue",
|
|
"alpha",
|
|
"cyan",
|
|
"magenta",
|
|
"yellow",
|
|
"black",
|
|
"hue",
|
|
"saturation",
|
|
"luminosity",
|
|
"value",
|
|
],
|
|
category="image",
|
|
version="1.2.3",
|
|
)
|
|
class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Scale a specific color channel of an image."""
|
|
|
|
image: ImageField = InputField(description="The image to adjust")
|
|
channel: COLOR_CHANNELS = InputField(description="Which channel to adjust")
|
|
scale: float = InputField(default=1.0, ge=0.0, description="The amount to scale the channel by.")
|
|
invert_channel: bool = InputField(default=False, description="Invert the channel after scaling")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name, "RGBA")
|
|
|
|
# extract the channel and mode from the input and reference tuple
|
|
mode = CHANNEL_FORMATS[self.channel][0]
|
|
channel_number = CHANNEL_FORMATS[self.channel][1]
|
|
|
|
# Convert PIL image to new format
|
|
converted_image = numpy.array(image.convert(mode)).astype(float)
|
|
image_channel = converted_image[:, :, channel_number]
|
|
|
|
# Adjust the value, clipping to 0..255
|
|
image_channel = numpy.clip(image_channel * self.scale, 0, 255)
|
|
|
|
# Invert the channel if requested
|
|
if self.invert_channel:
|
|
image_channel = 255 - image_channel
|
|
|
|
# Put the channel back into the image
|
|
converted_image[:, :, channel_number] = image_channel
|
|
|
|
# Convert back to RGBA format and output
|
|
pil_image = Image.fromarray(converted_image.astype(numpy.uint8), mode=mode).convert("RGBA")
|
|
|
|
# restore the alpha channel
|
|
if self.channel != "Alpha (RGBA)":
|
|
pil_image.putalpha(image.getchannel("A"))
|
|
|
|
image_dto = context.images.save(image=pil_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"save_image",
|
|
title="Save Image",
|
|
tags=["primitives", "image"],
|
|
category="primitives",
|
|
version="1.2.2",
|
|
use_cache=False,
|
|
)
|
|
class SaveImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Saves an image. Unlike an image primitive, this invocation stores a copy of the image."""
|
|
|
|
image: ImageField = InputField(description=FieldDescriptions.image)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
image_dto = context.images.save(image=image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"canvas_paste_back",
|
|
title="Canvas Paste Back",
|
|
tags=["image", "combine"],
|
|
category="image",
|
|
version="1.0.0",
|
|
)
|
|
class CanvasPasteBackInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Combines two images by using the mask provided. Intended for use on the Unified Canvas."""
|
|
|
|
source_image: ImageField = InputField(description="The source image")
|
|
target_image: ImageField = InputField(default=None, description="The target image")
|
|
mask: ImageField = InputField(
|
|
description="The mask to use when pasting",
|
|
)
|
|
mask_blur: int = InputField(default=0, ge=0, description="The amount to blur the mask by")
|
|
|
|
def _prepare_mask(self, mask: Image.Image) -> Image.Image:
|
|
mask_array = numpy.array(mask)
|
|
kernel = numpy.ones((self.mask_blur, self.mask_blur), numpy.uint8)
|
|
dilated_mask_array = cv2.erode(mask_array, kernel, iterations=3)
|
|
dilated_mask = Image.fromarray(dilated_mask_array)
|
|
if self.mask_blur > 0:
|
|
mask = dilated_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
|
|
return ImageOps.invert(mask.convert("L"))
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
source_image = context.images.get_pil(self.source_image.image_name)
|
|
target_image = context.images.get_pil(self.target_image.image_name)
|
|
mask = self._prepare_mask(context.images.get_pil(self.mask.image_name))
|
|
|
|
source_image.paste(target_image, (0, 0), mask)
|
|
|
|
image_dto = context.images.save(image=source_image)
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"mask_from_id",
|
|
title="Mask from Segmented Image",
|
|
tags=["image", "mask", "id"],
|
|
category="image",
|
|
version="1.0.1",
|
|
)
|
|
class MaskFromIDInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Generate a mask for a particular color in an ID Map"""
|
|
|
|
image: ImageField = InputField(description="The image to create the mask from")
|
|
color: ColorField = InputField(description="ID color to mask")
|
|
threshold: int = InputField(default=100, description="Threshold for color detection")
|
|
invert: bool = InputField(default=False, description="Whether or not to invert the mask")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name, mode="RGBA")
|
|
|
|
np_color = numpy.array(self.color.tuple())
|
|
|
|
# Maybe there's a faster way to calculate this distance but I can't think of any right now.
|
|
color_distance = numpy.linalg.norm(image - np_color, axis=-1)
|
|
|
|
# Create a mask based on the threshold and the distance calculated above
|
|
binary_mask = (color_distance < self.threshold).astype(numpy.uint8) * 255
|
|
|
|
# Convert the mask back to PIL
|
|
binary_mask_pil = Image.fromarray(binary_mask)
|
|
|
|
if self.invert:
|
|
binary_mask_pil = ImageOps.invert(binary_mask_pil)
|
|
|
|
image_dto = context.images.save(image=binary_mask_pil, image_category=ImageCategory.MASK)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"canvas_v2_mask_and_crop",
|
|
title="Canvas V2 Mask and Crop",
|
|
tags=["image", "mask", "id"],
|
|
category="image",
|
|
version="1.0.0",
|
|
classification=Classification.Deprecated,
|
|
)
|
|
class CanvasV2MaskAndCropInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Handles Canvas V2 image output masking and cropping"""
|
|
|
|
source_image: ImageField | None = InputField(
|
|
default=None,
|
|
description="The source image onto which the masked generated image is pasted. If omitted, the masked generated image is returned with transparency.",
|
|
)
|
|
generated_image: ImageField = InputField(description="The image to apply the mask to")
|
|
mask: ImageField = InputField(description="The mask to apply")
|
|
mask_blur: int = InputField(default=0, ge=0, description="The amount to blur the mask by")
|
|
|
|
def _prepare_mask(self, mask: Image.Image) -> Image.Image:
|
|
mask_array = numpy.array(mask)
|
|
kernel = numpy.ones((self.mask_blur, self.mask_blur), numpy.uint8)
|
|
dilated_mask_array = cv2.erode(mask_array, kernel, iterations=3)
|
|
dilated_mask = Image.fromarray(dilated_mask_array)
|
|
if self.mask_blur > 0:
|
|
mask = dilated_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
|
|
return ImageOps.invert(mask.convert("L"))
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
mask = self._prepare_mask(context.images.get_pil(self.mask.image_name))
|
|
|
|
if self.source_image:
|
|
generated_image = context.images.get_pil(self.generated_image.image_name)
|
|
source_image = context.images.get_pil(self.source_image.image_name)
|
|
source_image.paste(generated_image, (0, 0), mask)
|
|
image_dto = context.images.save(image=source_image)
|
|
else:
|
|
generated_image = context.images.get_pil(self.generated_image.image_name)
|
|
generated_image.putalpha(mask)
|
|
image_dto = context.images.save(image=generated_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"expand_mask_with_fade", title="Expand Mask with Fade", tags=["image", "mask"], category="image", version="1.0.1"
|
|
)
|
|
class ExpandMaskWithFadeInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Expands a mask with a fade effect. The mask uses black to indicate areas to keep from the generated image and white for areas to discard.
|
|
The mask is thresholded to create a binary mask, and then a distance transform is applied to create a fade effect.
|
|
The fade size is specified in pixels, and the mask is expanded by that amount. The result is a mask with a smooth transition from black to white.
|
|
If the fade size is 0, the mask is returned as-is.
|
|
"""
|
|
|
|
mask: ImageField = InputField(description="The mask to expand")
|
|
threshold: int = InputField(default=0, ge=0, le=255, description="The threshold for the binary mask (0-255)")
|
|
fade_size_px: int = InputField(default=32, ge=0, description="The size of the fade in pixels")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
pil_mask = context.images.get_pil(self.mask.image_name, mode="L")
|
|
|
|
if self.fade_size_px == 0:
|
|
# If the fade size is 0, just return the mask as-is.
|
|
image_dto = context.images.save(image=pil_mask, image_category=ImageCategory.MASK)
|
|
return ImageOutput.build(image_dto)
|
|
|
|
np_mask = numpy.array(pil_mask)
|
|
|
|
# Threshold the mask to create a binary mask - 0 for black, 255 for white
|
|
# If we don't threshold we can get some weird artifacts
|
|
np_mask = numpy.where(np_mask > self.threshold, 255, 0).astype(numpy.uint8)
|
|
|
|
# Create a mask for the black region (1 where black, 0 otherwise)
|
|
black_mask = (np_mask == 0).astype(numpy.uint8)
|
|
|
|
# Invert the black region
|
|
bg_mask = 1 - black_mask
|
|
|
|
# Create a distance transform of the inverted mask
|
|
dist = cv2.distanceTransform(bg_mask, cv2.DIST_L2, 5)
|
|
|
|
# Normalize distances so that pixels <fade_size_px become a linear gradient (0 to 1)
|
|
d_norm = numpy.clip(dist / self.fade_size_px, 0, 1)
|
|
|
|
# Control points: x values (normalized distance) and corresponding fade pct y values.
|
|
|
|
# There are some magic numbers here that are used to create a smooth transition:
|
|
# - The first point is at 0% of fade size from edge of mask (meaning the edge of the mask), and is 0% fade (black)
|
|
# - The second point is 1px from the edge of the mask and also has 0% fade, effectively expanding the mask
|
|
# by 1px. This fixes an issue where artifacts can occur at the edge of the mask
|
|
# - The third point is at 20% of the fade size from the edge of the mask and has 20% fade
|
|
# - The fourth point is at 80% of the fade size from the edge of the mask and has 90% fade
|
|
# - The last point is at 100% of the fade size from the edge of the mask and has 100% fade (white)
|
|
|
|
# x values: 0 = mask edge, 1 = fade_size_px from edge
|
|
x_control = numpy.array([0.0, 1.0 / self.fade_size_px, 0.2, 0.8, 1.0])
|
|
# y values: 0 = black, 1 = white
|
|
y_control = numpy.array([0.0, 0.0, 0.2, 0.9, 1.0])
|
|
|
|
# Fit a cubic polynomial that smoothly passes through the control points
|
|
coeffs = numpy.polyfit(x_control, y_control, 3)
|
|
poly = numpy.poly1d(coeffs)
|
|
|
|
# Evaluate the polynomial
|
|
feather = poly(d_norm)
|
|
|
|
# The polynomial fit isn't perfect. Points beyond the fade distance are likely to be slightly less than 1.0,
|
|
# even though the control points indicate that they should be exactly 1.0. This is due to the nature of the
|
|
# polynomial fit, which is a best approximation of the control points but not an exact match.
|
|
|
|
# When this occurs, the area outside the mask and fade-out will not be 100% transparent. For example, it may
|
|
# have an alpha value of 1 instead of 0. So we must force pixels at or beyond the fade distance to exactly 1.0.
|
|
|
|
# Force pixels at or beyond the fade distance to exactly 1.0
|
|
feather = numpy.where(d_norm >= 1.0, 1.0, feather)
|
|
|
|
# Clip any other values to ensure they're in the valid range [0,1]
|
|
feather = numpy.clip(feather, 0, 1)
|
|
|
|
# Build final image.
|
|
np_result = numpy.where(black_mask == 1, 0, (feather * 255).astype(numpy.uint8))
|
|
|
|
# Convert back to PIL, grayscale
|
|
pil_result = Image.fromarray(np_result.astype(numpy.uint8), mode="L")
|
|
|
|
image_dto = context.images.save(image=pil_result, image_category=ImageCategory.MASK)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"apply_mask_to_image",
|
|
title="Apply Mask to Image",
|
|
tags=["image", "mask", "blend"],
|
|
category="image",
|
|
version="1.0.0",
|
|
)
|
|
class ApplyMaskToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""
|
|
Extracts a region from a generated image using a mask and blends it seamlessly onto a source image.
|
|
The mask uses black to indicate areas to keep from the generated image and white for areas to discard.
|
|
"""
|
|
|
|
image: ImageField = InputField(description="The image from which to extract the masked region")
|
|
mask: ImageField = InputField(description="The mask defining the region (black=keep, white=discard)")
|
|
invert_mask: bool = InputField(
|
|
default=False,
|
|
description="Whether to invert the mask before applying it",
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
# Load images
|
|
image = context.images.get_pil(self.image.image_name, mode="RGBA")
|
|
mask = context.images.get_pil(self.mask.image_name, mode="L")
|
|
|
|
if self.invert_mask:
|
|
# Invert the mask if requested
|
|
mask = ImageOps.invert(mask.copy())
|
|
|
|
# Combine the mask as the alpha channel of the image
|
|
r, g, b, _ = image.split() # Split the image into RGB and alpha channels
|
|
result_image = Image.merge("RGBA", (r, g, b, mask)) # Use the mask as the new alpha channel
|
|
|
|
# Save the resulting image
|
|
image_dto = context.images.save(image=result_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"img_noise",
|
|
title="Add Image Noise",
|
|
tags=["image", "noise"],
|
|
category="image",
|
|
version="1.0.1",
|
|
)
|
|
class ImageNoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Add noise to an image"""
|
|
|
|
image: ImageField = InputField(description="The image to add noise to")
|
|
seed: int = InputField(
|
|
default=0,
|
|
ge=0,
|
|
le=SEED_MAX,
|
|
description=FieldDescriptions.seed,
|
|
)
|
|
noise_type: Literal["gaussian", "salt_and_pepper"] = InputField(
|
|
default="gaussian",
|
|
description="The type of noise to add",
|
|
)
|
|
amount: float = InputField(default=0.1, ge=0, le=1, description="The amount of noise to add")
|
|
noise_color: bool = InputField(default=True, description="Whether to add colored noise")
|
|
size: int = InputField(default=1, ge=1, description="The size of the noise points")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name, mode="RGBA")
|
|
|
|
# Save out the alpha channel
|
|
alpha = image.getchannel("A")
|
|
|
|
# Set the seed for numpy random
|
|
rs = numpy.random.RandomState(numpy.random.MT19937(numpy.random.SeedSequence(self.seed)))
|
|
|
|
if self.noise_type == "gaussian":
|
|
if self.noise_color:
|
|
noise = rs.normal(0, 1, (image.height // self.size, image.width // self.size, 3)) * 255
|
|
else:
|
|
noise = rs.normal(0, 1, (image.height // self.size, image.width // self.size)) * 255
|
|
noise = numpy.stack([noise] * 3, axis=-1)
|
|
elif self.noise_type == "salt_and_pepper":
|
|
if self.noise_color:
|
|
noise = rs.choice(
|
|
[0, 255], (image.height // self.size, image.width // self.size, 3), p=[1 - self.amount, self.amount]
|
|
)
|
|
else:
|
|
noise = rs.choice(
|
|
[0, 255], (image.height // self.size, image.width // self.size), p=[1 - self.amount, self.amount]
|
|
)
|
|
noise = numpy.stack([noise] * 3, axis=-1)
|
|
|
|
noise = Image.fromarray(noise.astype(numpy.uint8), mode="RGB").resize(
|
|
(image.width, image.height), Image.Resampling.NEAREST
|
|
)
|
|
noisy_image = Image.blend(image.convert("RGB"), noise, self.amount).convert("RGBA")
|
|
|
|
# Paste back the alpha channel
|
|
noisy_image.putalpha(alpha)
|
|
|
|
image_dto = context.images.save(image=noisy_image)
|
|
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"crop_image_to_bounding_box",
|
|
title="Crop Image to Bounding Box",
|
|
category="image",
|
|
version="1.0.0",
|
|
tags=["image", "crop"],
|
|
)
|
|
class CropImageToBoundingBoxInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Crop an image to the given bounding box. If the bounding box is omitted, the image is cropped to the non-transparent pixels."""
|
|
|
|
image: ImageField = InputField(description="The image to crop")
|
|
bounding_box: BoundingBoxField | None = InputField(
|
|
default=None, description="The bounding box to crop the image to"
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
bounding_box = self.bounding_box.tuple() if self.bounding_box is not None else image.getbbox()
|
|
|
|
cropped_image = image.crop(bounding_box)
|
|
|
|
image_dto = context.images.save(image=cropped_image)
|
|
return ImageOutput.build(image_dto)
|
|
|
|
|
|
@invocation(
|
|
"paste_image_into_bounding_box",
|
|
title="Paste Image into Bounding Box",
|
|
category="image",
|
|
version="1.0.0",
|
|
tags=["image", "crop"],
|
|
)
|
|
class PasteImageIntoBoundingBoxInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Paste the source image into the target image at the given bounding box.
|
|
|
|
The source image must be the same size as the bounding box, and the bounding box must fit within the target image."""
|
|
|
|
source_image: ImageField = InputField(description="The image to paste")
|
|
target_image: ImageField = InputField(description="The image to paste into")
|
|
bounding_box: BoundingBoxField = InputField(description="The bounding box to paste the image into")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
source_image = context.images.get_pil(self.source_image.image_name, mode="RGBA")
|
|
target_image = context.images.get_pil(self.target_image.image_name, mode="RGBA")
|
|
|
|
bounding_box = self.bounding_box.tuple()
|
|
|
|
target_image.paste(source_image, bounding_box, source_image)
|
|
|
|
image_dto = context.images.save(image=target_image)
|
|
return ImageOutput.build(image_dto)
|