InvokeAI/tests/backend/flux/controlnet/test_state_dict_utils.py
2025-03-28 18:28:32 -04:00

109 lines
4.4 KiB
Python

import sys
import pytest
import torch
from invokeai.backend.flux.controlnet.instantx_controlnet_flux import InstantXControlNetFlux
from invokeai.backend.flux.controlnet.state_dict_utils import (
convert_diffusers_instantx_state_dict_to_bfl_format,
infer_flux_params_from_state_dict,
infer_instantx_num_control_modes_from_state_dict,
is_state_dict_instantx_controlnet,
is_state_dict_xlabs_controlnet,
)
from tests.backend.flux.controlnet.instantx_flux_controlnet_state_dict import instantx_config, instantx_sd_shapes
from tests.backend.flux.controlnet.xlabs_flux_controlnet_state_dict import xlabs_sd_shapes
@pytest.mark.parametrize(
["sd_shapes", "expected"],
[
(xlabs_sd_shapes, True),
(instantx_sd_shapes, False),
(["foo"], False),
],
)
def test_is_state_dict_xlabs_controlnet(sd_shapes: dict[str, list[int]], expected: bool):
sd = dict.fromkeys(sd_shapes)
assert is_state_dict_xlabs_controlnet(sd) == expected
@pytest.mark.parametrize(
["sd_keys", "expected"],
[
(instantx_sd_shapes, True),
(xlabs_sd_shapes, False),
(["foo"], False),
],
)
def test_is_state_dict_instantx_controlnet(sd_keys: list[str], expected: bool):
sd = dict.fromkeys(sd_keys)
assert is_state_dict_instantx_controlnet(sd) == expected
def test_convert_diffusers_instantx_state_dict_to_bfl_format():
"""Smoke test convert_diffusers_instantx_state_dict_to_bfl_format() to ensure that it handles all of the keys."""
sd = {k: torch.zeros(1) for k in instantx_sd_shapes}
bfl_sd = convert_diffusers_instantx_state_dict_to_bfl_format(sd)
assert bfl_sd is not None
# TODO(ryand): Figure out why some tests in this file are failing on the MacOS CI runners. It seems to be related to
# using the meta device. I can't reproduce the issue on my local MacOS system.
@pytest.mark.skipif(sys.platform == "darwin", reason="Skipping on macOS")
def test_infer_flux_params_from_state_dict():
# Construct a dummy state_dict with tensors of the correct shape on the meta device.
with torch.device("meta"):
sd = {k: torch.zeros(v) for k, v in instantx_sd_shapes.items()}
sd = convert_diffusers_instantx_state_dict_to_bfl_format(sd)
flux_params = infer_flux_params_from_state_dict(sd)
assert flux_params.in_channels == instantx_config["in_channels"]
assert flux_params.vec_in_dim == instantx_config["pooled_projection_dim"]
assert flux_params.context_in_dim == instantx_config["joint_attention_dim"]
assert flux_params.hidden_size // flux_params.num_heads == instantx_config["attention_head_dim"]
assert flux_params.num_heads == instantx_config["num_attention_heads"]
assert flux_params.mlp_ratio == 4
assert flux_params.depth == instantx_config["num_layers"]
assert flux_params.depth_single_blocks == instantx_config["num_single_layers"]
assert flux_params.axes_dim == instantx_config["axes_dims_rope"]
assert flux_params.theta == 10000
assert flux_params.qkv_bias
assert flux_params.guidance_embed == instantx_config["guidance_embeds"]
@pytest.mark.skipif(sys.platform == "darwin", reason="Skipping on macOS")
def test_infer_instantx_num_control_modes_from_state_dict():
# Construct a dummy state_dict with tensors of the correct shape on the meta device.
with torch.device("meta"):
sd = {k: torch.zeros(v) for k, v in instantx_sd_shapes.items()}
sd = convert_diffusers_instantx_state_dict_to_bfl_format(sd)
num_control_modes = infer_instantx_num_control_modes_from_state_dict(sd)
assert num_control_modes == instantx_config["num_mode"]
@pytest.mark.skipif(sys.platform == "darwin", reason="Skipping on macOS")
def test_load_instantx_from_state_dict():
# Construct a dummy state_dict with tensors of the correct shape on the meta device.
with torch.device("meta"):
sd = {k: torch.zeros(v) for k, v in instantx_sd_shapes.items()}
sd = convert_diffusers_instantx_state_dict_to_bfl_format(sd)
flux_params = infer_flux_params_from_state_dict(sd)
num_control_modes = infer_instantx_num_control_modes_from_state_dict(sd)
with torch.device("meta"):
model = InstantXControlNetFlux(flux_params, num_control_modes)
model_sd = model.state_dict()
assert set(model_sd.keys()) == set(sd.keys())
for key, tensor in model_sd.items():
assert isinstance(tensor, torch.Tensor)
assert tensor.shape == sd[key].shape