diff --git a/.github/workflows/run_tests.yaml b/.github/workflows/run_tests.yaml index e9370cc07..3dafaf8dc 100644 --- a/.github/workflows/run_tests.yaml +++ b/.github/workflows/run_tests.yaml @@ -41,6 +41,7 @@ jobs: --skip-prepare-environment --skip-torch-cuda-test --test-server + --do-not-download-clip --no-half --disable-opt-split-attention --use-cpu all diff --git a/CHANGELOG.md b/CHANGELOG.md index 30783d9db..b18c68673 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,9 +1,35 @@ +## 1.5.1 + +### Minor: + * support parsing text encoder blocks in some new LoRAs + * delete scale checker script due to user demand + +### Extensions and API: + * add postprocess_batch_list script callback + +### Bug Fixes: + * fix TI training for SD1 + * fix reload altclip model error + * prepend the pythonpath instead of overriding it + * fix typo in SD_WEBUI_RESTARTING + * if txt2img/img2img raises an exception, finally call state.end() + * fix composable diffusion weight parsing + * restyle Startup profile for black users + * fix webui not launching with --nowebui + * catch exception for non git extensions + * fix some options missing from /sdapi/v1/options + * fix for extension update status always saying "unknown" + * fix display of extra network cards that have `<>` in the name + * update lora extension to work with python 3.8 + + ## 1.5.0 ### Features: * SD XL support * user metadata system for custom networks * extended Lora metadata editor: set activation text, default weight, view tags, training info + * Lora extension rework to include other types of networks (all that were previously handled by LyCORIS extension) * show github stars for extenstions * img2img batch mode can read extra stuff from png info * img2img batch works with subdirectories @@ -11,6 +37,9 @@ * restyle time taken/VRAM display * add textual inversion hashes to infotext * optimization: cache git extension repo information + * move generate button next to the generated picture for mobile clients + * hide cards for networks of incompatible Stable Diffusion version in Lora extra networks interface + * skip installing packages with pip if they all are already installed - startup speedup of about 2 seconds ### Minor: * checkbox to check/uncheck all extensions in the Installed tab @@ -25,6 +54,8 @@ * speedup extra networks listing * added `[none]` filename token. * removed thumbs extra networks view mode (use settings tab to change width/height/scale to get thumbs) + * add always_discard_next_to_last_sigma option to XYZ plot + * automatically switch to 32-bit float VAE if the generated picture has NaNs without the need for `--no-half-vae` commandline flag. ### Extensions and API: * api endpoints: /sdapi/v1/server-kill, /sdapi/v1/server-restart, /sdapi/v1/server-stop @@ -53,9 +84,8 @@ * fix: check fill size none zero when resize (fixes #11425) * use submit and blur for quick settings textbox * save img2img batch with images.save_image() - * - - + * prevent running preload.py for disabled extensions + * fix: previously, model name was added together with directory name to infotext and to [model_name] filename pattern; directory name is now not included ## 1.4.1 diff --git a/README.md b/README.md index e6d8e4bd4..2fd6e425d 100644 --- a/README.md +++ b/README.md @@ -88,7 +88,7 @@ A browser interface based on Gradio library for Stable Diffusion. - [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions - Now without any bad letters! - Load checkpoints in safetensors format -- Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64 +- Eased resolution restriction: generated image's dimension must be a multiple of 8 rather than 64 - Now with a license! - Reorder elements in the UI from settings screen @@ -168,5 +168,7 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al - Security advice - RyotaK - UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC - TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd +- LyCORIS - KohakuBlueleaf +- Restart sampling - lambertae - https://github.com/Newbeeer/diffusion_restart_sampling - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. - (You) diff --git a/extensions-builtin/Lora/extra_networks_lora.py b/extensions-builtin/Lora/extra_networks_lora.py index 66ee9c856..ba2945c6f 100644 --- a/extensions-builtin/Lora/extra_networks_lora.py +++ b/extensions-builtin/Lora/extra_networks_lora.py @@ -1,5 +1,5 @@ from modules import extra_networks, shared -import lora +import networks class ExtraNetworkLora(extra_networks.ExtraNetwork): @@ -9,24 +9,38 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork): def activate(self, p, params_list): additional = shared.opts.sd_lora - if additional != "None" and additional in lora.available_loras and not any(x for x in params_list if x.items[0] == additional): + if additional != "None" and additional in networks.available_networks and not any(x for x in params_list if x.items[0] == additional): p.all_prompts = [x + f"" for x in p.all_prompts] params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier])) names = [] - multipliers = [] + te_multipliers = [] + unet_multipliers = [] + dyn_dims = [] for params in params_list: assert params.items - names.append(params.items[0]) - multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0) + names.append(params.positional[0]) - lora.load_loras(names, multipliers) + te_multiplier = float(params.positional[1]) if len(params.positional) > 1 else 1.0 + te_multiplier = float(params.named.get("te", te_multiplier)) + + unet_multiplier = float(params.positional[2]) if len(params.positional) > 2 else te_multiplier + unet_multiplier = float(params.named.get("unet", unet_multiplier)) + + dyn_dim = int(params.positional[3]) if len(params.positional) > 3 else None + dyn_dim = int(params.named["dyn"]) if "dyn" in params.named else dyn_dim + + te_multipliers.append(te_multiplier) + unet_multipliers.append(unet_multiplier) + dyn_dims.append(dyn_dim) + + networks.load_networks(names, te_multipliers, unet_multipliers, dyn_dims) if shared.opts.lora_add_hashes_to_infotext: - lora_hashes = [] - for item in lora.loaded_loras: - shorthash = item.lora_on_disk.shorthash + network_hashes = [] + for item in networks.loaded_networks: + shorthash = item.network_on_disk.shorthash if not shorthash: continue @@ -36,10 +50,10 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork): alias = alias.replace(":", "").replace(",", "") - lora_hashes.append(f"{alias}: {shorthash}") + network_hashes.append(f"{alias}: {shorthash}") - if lora_hashes: - p.extra_generation_params["Lora hashes"] = ", ".join(lora_hashes) + if network_hashes: + p.extra_generation_params["Lora hashes"] = ", ".join(network_hashes) def deactivate(self, p): pass diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py index 9cdff6ed6..9365aa74b 100644 --- a/extensions-builtin/Lora/lora.py +++ b/extensions-builtin/Lora/lora.py @@ -1,537 +1,9 @@ -import os -import re -import torch -from typing import Union +import networks -from modules import shared, devices, sd_models, errors, scripts, sd_hijack, hashes, cache +list_available_loras = networks.list_available_networks -metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20} - -re_digits = re.compile(r"\d+") -re_x_proj = re.compile(r"(.*)_([qkv]_proj)$") -re_compiled = {} - -suffix_conversion = { - "attentions": {}, - "resnets": { - "conv1": "in_layers_2", - "conv2": "out_layers_3", - "time_emb_proj": "emb_layers_1", - "conv_shortcut": "skip_connection", - } -} - - -def convert_diffusers_name_to_compvis(key, is_sd2): - def match(match_list, regex_text): - regex = re_compiled.get(regex_text) - if regex is None: - regex = re.compile(regex_text) - re_compiled[regex_text] = regex - - r = re.match(regex, key) - if not r: - return False - - match_list.clear() - match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()]) - return True - - m = [] - - if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"): - suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3]) - return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}" - - if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"): - suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2]) - return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}" - - if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"): - suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3]) - return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}" - - if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"): - return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op" - - if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"): - return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv" - - if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"): - if is_sd2: - if 'mlp_fc1' in m[1]: - return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}" - elif 'mlp_fc2' in m[1]: - return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}" - else: - return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}" - - return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}" - - if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"): - if 'mlp_fc1' in m[1]: - return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}" - elif 'mlp_fc2' in m[1]: - return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}" - else: - return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}" - - return key - - -class LoraOnDisk: - def __init__(self, name, filename): - self.name = name - self.filename = filename - self.metadata = {} - self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors" - - def read_metadata(): - metadata = sd_models.read_metadata_from_safetensors(filename) - metadata.pop('ssmd_cover_images', None) # those are cover images, and they are too big to display in UI as text - - return metadata - - if self.is_safetensors: - try: - self.metadata = cache.cached_data_for_file('safetensors-metadata', "lora/" + self.name, filename, read_metadata) - except Exception as e: - errors.display(e, f"reading lora {filename}") - - if self.metadata: - m = {} - for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)): - m[k] = v - - self.metadata = m - - self.alias = self.metadata.get('ss_output_name', self.name) - - self.hash = None - self.shorthash = None - self.set_hash( - self.metadata.get('sshs_model_hash') or - hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or - '' - ) - - def set_hash(self, v): - self.hash = v - self.shorthash = self.hash[0:12] - - if self.shorthash: - available_lora_hash_lookup[self.shorthash] = self - - def read_hash(self): - if not self.hash: - self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '') - - def get_alias(self): - if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in forbidden_lora_aliases: - return self.name - else: - return self.alias - - -class LoraModule: - def __init__(self, name, lora_on_disk: LoraOnDisk): - self.name = name - self.lora_on_disk = lora_on_disk - self.multiplier = 1.0 - self.modules = {} - self.mtime = None - - self.mentioned_name = None - """the text that was used to add lora to prompt - can be either name or an alias""" - - -class LoraUpDownModule: - def __init__(self): - self.up = None - self.down = None - self.alpha = None - - -def assign_lora_names_to_compvis_modules(sd_model): - lora_layer_mapping = {} - - if shared.sd_model.is_sdxl: - for i, embedder in enumerate(shared.sd_model.conditioner.embedders): - if not hasattr(embedder, 'wrapped'): - continue - - for name, module in embedder.wrapped.named_modules(): - lora_name = f'{i}_{name.replace(".", "_")}' - lora_layer_mapping[lora_name] = module - module.lora_layer_name = lora_name - else: - for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules(): - lora_name = name.replace(".", "_") - lora_layer_mapping[lora_name] = module - module.lora_layer_name = lora_name - - for name, module in shared.sd_model.model.named_modules(): - lora_name = name.replace(".", "_") - lora_layer_mapping[lora_name] = module - module.lora_layer_name = lora_name - - sd_model.lora_layer_mapping = lora_layer_mapping - - -def load_lora(name, lora_on_disk): - lora = LoraModule(name, lora_on_disk) - lora.mtime = os.path.getmtime(lora_on_disk.filename) - - sd = sd_models.read_state_dict(lora_on_disk.filename) - - # this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0 - if not hasattr(shared.sd_model, 'lora_layer_mapping'): - assign_lora_names_to_compvis_modules(shared.sd_model) - - keys_failed_to_match = {} - is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lora_layer_mapping - - for key_lora, weight in sd.items(): - key_lora_without_lora_parts, lora_key = key_lora.split(".", 1) - - key = convert_diffusers_name_to_compvis(key_lora_without_lora_parts, is_sd2) - sd_module = shared.sd_model.lora_layer_mapping.get(key, None) - - if sd_module is None: - m = re_x_proj.match(key) - if m: - sd_module = shared.sd_model.lora_layer_mapping.get(m.group(1), None) - - # SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model" - if sd_module is None and "lora_unet" in key_lora_without_lora_parts: - key = key_lora_without_lora_parts.replace("lora_unet", "diffusion_model") - sd_module = shared.sd_model.lora_layer_mapping.get(key, None) - elif sd_module is None and "lora_te1_text_model" in key_lora_without_lora_parts: - key = key_lora_without_lora_parts.replace("lora_te1_text_model", "0_transformer_text_model") - sd_module = shared.sd_model.lora_layer_mapping.get(key, None) - - if sd_module is None: - keys_failed_to_match[key_lora] = key - continue - - lora_module = lora.modules.get(key, None) - if lora_module is None: - lora_module = LoraUpDownModule() - lora.modules[key] = lora_module - - if lora_key == "alpha": - lora_module.alpha = weight.item() - continue - - if type(sd_module) == torch.nn.Linear: - module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) - elif type(sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear: - module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) - elif type(sd_module) == torch.nn.MultiheadAttention: - module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) - elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (1, 1): - module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) - elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (3, 3): - module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (3, 3), bias=False) - else: - print(f'Lora layer {key_lora} matched a layer with unsupported type: {type(sd_module).__name__}') - continue - raise AssertionError(f"Lora layer {key_lora} matched a layer with unsupported type: {type(sd_module).__name__}") - - with torch.no_grad(): - module.weight.copy_(weight) - - module.to(device=devices.cpu, dtype=devices.dtype) - - if lora_key == "lora_up.weight": - lora_module.up = module - elif lora_key == "lora_down.weight": - lora_module.down = module - else: - raise AssertionError(f"Bad Lora layer name: {key_lora} - must end in lora_up.weight, lora_down.weight or alpha") - - if keys_failed_to_match: - print(f"Failed to match keys when loading Lora {lora_on_disk.filename}: {keys_failed_to_match}") - - return lora - - -def load_loras(names, multipliers=None): - already_loaded = {} - - for lora in loaded_loras: - if lora.name in names: - already_loaded[lora.name] = lora - - loaded_loras.clear() - - loras_on_disk = [available_lora_aliases.get(name, None) for name in names] - if any(x is None for x in loras_on_disk): - list_available_loras() - - loras_on_disk = [available_lora_aliases.get(name, None) for name in names] - - failed_to_load_loras = [] - - for i, name in enumerate(names): - lora = already_loaded.get(name, None) - - lora_on_disk = loras_on_disk[i] - - if lora_on_disk is not None: - if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime: - try: - lora = load_lora(name, lora_on_disk) - except Exception as e: - errors.display(e, f"loading Lora {lora_on_disk.filename}") - continue - - lora.mentioned_name = name - - lora_on_disk.read_hash() - - if lora is None: - failed_to_load_loras.append(name) - print(f"Couldn't find Lora with name {name}") - continue - - lora.multiplier = multipliers[i] if multipliers else 1.0 - loaded_loras.append(lora) - - if failed_to_load_loras: - sd_hijack.model_hijack.comments.append("Failed to find Loras: " + ", ".join(failed_to_load_loras)) - - -def lora_calc_updown(lora, module, target): - with torch.no_grad(): - up = module.up.weight.to(target.device, dtype=target.dtype) - down = module.down.weight.to(target.device, dtype=target.dtype) - - if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1): - updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3) - elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3): - updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3) - else: - updown = up @ down - - updown = updown * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0) - - return updown - - -def lora_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]): - weights_backup = getattr(self, "lora_weights_backup", None) - - if weights_backup is None: - return - - if isinstance(self, torch.nn.MultiheadAttention): - self.in_proj_weight.copy_(weights_backup[0]) - self.out_proj.weight.copy_(weights_backup[1]) - else: - self.weight.copy_(weights_backup) - - -def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]): - """ - Applies the currently selected set of Loras to the weights of torch layer self. - If weights already have this particular set of loras applied, does nothing. - If not, restores orginal weights from backup and alters weights according to loras. - """ - - lora_layer_name = getattr(self, 'lora_layer_name', None) - if lora_layer_name is None: - return - - current_names = getattr(self, "lora_current_names", ()) - wanted_names = tuple((x.name, x.multiplier) for x in loaded_loras) - - weights_backup = getattr(self, "lora_weights_backup", None) - if weights_backup is None: - if isinstance(self, torch.nn.MultiheadAttention): - weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True)) - else: - weights_backup = self.weight.to(devices.cpu, copy=True) - - self.lora_weights_backup = weights_backup - - if current_names != wanted_names: - lora_restore_weights_from_backup(self) - - for lora in loaded_loras: - module = lora.modules.get(lora_layer_name, None) - if module is not None and hasattr(self, 'weight'): - self.weight += lora_calc_updown(lora, module, self.weight) - continue - - module_q = lora.modules.get(lora_layer_name + "_q_proj", None) - module_k = lora.modules.get(lora_layer_name + "_k_proj", None) - module_v = lora.modules.get(lora_layer_name + "_v_proj", None) - module_out = lora.modules.get(lora_layer_name + "_out_proj", None) - - if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out: - updown_q = lora_calc_updown(lora, module_q, self.in_proj_weight) - updown_k = lora_calc_updown(lora, module_k, self.in_proj_weight) - updown_v = lora_calc_updown(lora, module_v, self.in_proj_weight) - updown_qkv = torch.vstack([updown_q, updown_k, updown_v]) - - self.in_proj_weight += updown_qkv - self.out_proj.weight += lora_calc_updown(lora, module_out, self.out_proj.weight) - continue - - if module is None: - continue - - print(f'failed to calculate lora weights for layer {lora_layer_name}') - - self.lora_current_names = wanted_names - - -def lora_forward(module, input, original_forward): - """ - Old way of applying Lora by executing operations during layer's forward. - Stacking many loras this way results in big performance degradation. - """ - - if len(loaded_loras) == 0: - return original_forward(module, input) - - input = devices.cond_cast_unet(input) - - lora_restore_weights_from_backup(module) - lora_reset_cached_weight(module) - - res = original_forward(module, input) - - lora_layer_name = getattr(module, 'lora_layer_name', None) - for lora in loaded_loras: - module = lora.modules.get(lora_layer_name, None) - if module is None: - continue - - module.up.to(device=devices.device) - module.down.to(device=devices.device) - - res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0) - - return res - - -def lora_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]): - self.lora_current_names = () - self.lora_weights_backup = None - - -def lora_Linear_forward(self, input): - if shared.opts.lora_functional: - return lora_forward(self, input, torch.nn.Linear_forward_before_lora) - - lora_apply_weights(self) - - return torch.nn.Linear_forward_before_lora(self, input) - - -def lora_Linear_load_state_dict(self, *args, **kwargs): - lora_reset_cached_weight(self) - - return torch.nn.Linear_load_state_dict_before_lora(self, *args, **kwargs) - - -def lora_Conv2d_forward(self, input): - if shared.opts.lora_functional: - return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora) - - lora_apply_weights(self) - - return torch.nn.Conv2d_forward_before_lora(self, input) - - -def lora_Conv2d_load_state_dict(self, *args, **kwargs): - lora_reset_cached_weight(self) - - return torch.nn.Conv2d_load_state_dict_before_lora(self, *args, **kwargs) - - -def lora_MultiheadAttention_forward(self, *args, **kwargs): - lora_apply_weights(self) - - return torch.nn.MultiheadAttention_forward_before_lora(self, *args, **kwargs) - - -def lora_MultiheadAttention_load_state_dict(self, *args, **kwargs): - lora_reset_cached_weight(self) - - return torch.nn.MultiheadAttention_load_state_dict_before_lora(self, *args, **kwargs) - - -def list_available_loras(): - available_loras.clear() - available_lora_aliases.clear() - forbidden_lora_aliases.clear() - available_lora_hash_lookup.clear() - forbidden_lora_aliases.update({"none": 1, "Addams": 1}) - - os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True) - - candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"])) - for filename in candidates: - if os.path.isdir(filename): - continue - - name = os.path.splitext(os.path.basename(filename))[0] - try: - entry = LoraOnDisk(name, filename) - except OSError: # should catch FileNotFoundError and PermissionError etc. - errors.report(f"Failed to load LoRA {name} from {filename}", exc_info=True) - continue - - available_loras[name] = entry - - if entry.alias in available_lora_aliases: - forbidden_lora_aliases[entry.alias.lower()] = 1 - - available_lora_aliases[name] = entry - available_lora_aliases[entry.alias] = entry - - -re_lora_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)") - - -def infotext_pasted(infotext, params): - if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]: - return # if the other extension is active, it will handle those fields, no need to do anything - - added = [] - - for k in params: - if not k.startswith("AddNet Model "): - continue - - num = k[13:] - - if params.get("AddNet Module " + num) != "LoRA": - continue - - name = params.get("AddNet Model " + num) - if name is None: - continue - - m = re_lora_name.match(name) - if m: - name = m.group(1) - - multiplier = params.get("AddNet Weight A " + num, "1.0") - - added.append(f"") - - if added: - params["Prompt"] += "\n" + "".join(added) - - -available_loras = {} -available_lora_aliases = {} -available_lora_hash_lookup = {} -forbidden_lora_aliases = {} -loaded_loras = [] - -list_available_loras() +available_loras = networks.available_networks +available_lora_aliases = networks.available_network_aliases +available_lora_hash_lookup = networks.available_network_hash_lookup +forbidden_lora_aliases = networks.forbidden_network_aliases +loaded_loras = networks.loaded_networks diff --git a/extensions-builtin/Lora/lyco_helpers.py b/extensions-builtin/Lora/lyco_helpers.py new file mode 100644 index 000000000..279b34bc9 --- /dev/null +++ b/extensions-builtin/Lora/lyco_helpers.py @@ -0,0 +1,21 @@ +import torch + + +def make_weight_cp(t, wa, wb): + temp = torch.einsum('i j k l, j r -> i r k l', t, wb) + return torch.einsum('i j k l, i r -> r j k l', temp, wa) + + +def rebuild_conventional(up, down, shape, dyn_dim=None): + up = up.reshape(up.size(0), -1) + down = down.reshape(down.size(0), -1) + if dyn_dim is not None: + up = up[:, :dyn_dim] + down = down[:dyn_dim, :] + return (up @ down).reshape(shape) + + +def rebuild_cp_decomposition(up, down, mid): + up = up.reshape(up.size(0), -1) + down = down.reshape(down.size(0), -1) + return torch.einsum('n m k l, i n, m j -> i j k l', mid, up, down) diff --git a/extensions-builtin/Lora/network.py b/extensions-builtin/Lora/network.py new file mode 100644 index 000000000..0a18d69eb --- /dev/null +++ b/extensions-builtin/Lora/network.py @@ -0,0 +1,155 @@ +from __future__ import annotations +import os +from collections import namedtuple +import enum + +from modules import sd_models, cache, errors, hashes, shared + +NetworkWeights = namedtuple('NetworkWeights', ['network_key', 'sd_key', 'w', 'sd_module']) + +metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20} + + +class SdVersion(enum.Enum): + Unknown = 1 + SD1 = 2 + SD2 = 3 + SDXL = 4 + + +class NetworkOnDisk: + def __init__(self, name, filename): + self.name = name + self.filename = filename + self.metadata = {} + self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors" + + def read_metadata(): + metadata = sd_models.read_metadata_from_safetensors(filename) + metadata.pop('ssmd_cover_images', None) # those are cover images, and they are too big to display in UI as text + + return metadata + + if self.is_safetensors: + try: + self.metadata = cache.cached_data_for_file('safetensors-metadata', "lora/" + self.name, filename, read_metadata) + except Exception as e: + errors.display(e, f"reading lora {filename}") + + if self.metadata: + m = {} + for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)): + m[k] = v + + self.metadata = m + + self.alias = self.metadata.get('ss_output_name', self.name) + + self.hash = None + self.shorthash = None + self.set_hash( + self.metadata.get('sshs_model_hash') or + hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or + '' + ) + + self.sd_version = self.detect_version() + + def detect_version(self): + if str(self.metadata.get('ss_base_model_version', "")).startswith("sdxl_"): + return SdVersion.SDXL + elif str(self.metadata.get('ss_v2', "")) == "True": + return SdVersion.SD2 + elif len(self.metadata): + return SdVersion.SD1 + + return SdVersion.Unknown + + def set_hash(self, v): + self.hash = v + self.shorthash = self.hash[0:12] + + if self.shorthash: + import networks + networks.available_network_hash_lookup[self.shorthash] = self + + def read_hash(self): + if not self.hash: + self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '') + + def get_alias(self): + import networks + if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in networks.forbidden_network_aliases: + return self.name + else: + return self.alias + + +class Network: # LoraModule + def __init__(self, name, network_on_disk: NetworkOnDisk): + self.name = name + self.network_on_disk = network_on_disk + self.te_multiplier = 1.0 + self.unet_multiplier = 1.0 + self.dyn_dim = None + self.modules = {} + self.mtime = None + + self.mentioned_name = None + """the text that was used to add the network to prompt - can be either name or an alias""" + + +class ModuleType: + def create_module(self, net: Network, weights: NetworkWeights) -> Network | None: + return None + + +class NetworkModule: + def __init__(self, net: Network, weights: NetworkWeights): + self.network = net + self.network_key = weights.network_key + self.sd_key = weights.sd_key + self.sd_module = weights.sd_module + + if hasattr(self.sd_module, 'weight'): + self.shape = self.sd_module.weight.shape + + self.dim = None + self.bias = weights.w.get("bias") + self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None + self.scale = weights.w["scale"].item() if "scale" in weights.w else None + + def multiplier(self): + if 'transformer' in self.sd_key[:20]: + return self.network.te_multiplier + else: + return self.network.unet_multiplier + + def calc_scale(self): + if self.scale is not None: + return self.scale + if self.dim is not None and self.alpha is not None: + return self.alpha / self.dim + + return 1.0 + + def finalize_updown(self, updown, orig_weight, output_shape): + if self.bias is not None: + updown = updown.reshape(self.bias.shape) + updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype) + updown = updown.reshape(output_shape) + + if len(output_shape) == 4: + updown = updown.reshape(output_shape) + + if orig_weight.size().numel() == updown.size().numel(): + updown = updown.reshape(orig_weight.shape) + + return updown * self.calc_scale() * self.multiplier() + + def calc_updown(self, target): + raise NotImplementedError() + + def forward(self, x, y): + raise NotImplementedError() + diff --git a/extensions-builtin/Lora/network_full.py b/extensions-builtin/Lora/network_full.py new file mode 100644 index 000000000..109b4c2c5 --- /dev/null +++ b/extensions-builtin/Lora/network_full.py @@ -0,0 +1,22 @@ +import network + + +class ModuleTypeFull(network.ModuleType): + def create_module(self, net: network.Network, weights: network.NetworkWeights): + if all(x in weights.w for x in ["diff"]): + return NetworkModuleFull(net, weights) + + return None + + +class NetworkModuleFull(network.NetworkModule): + def __init__(self, net: network.Network, weights: network.NetworkWeights): + super().__init__(net, weights) + + self.weight = weights.w.get("diff") + + def calc_updown(self, orig_weight): + output_shape = self.weight.shape + updown = self.weight.to(orig_weight.device, dtype=orig_weight.dtype) + + return self.finalize_updown(updown, orig_weight, output_shape) diff --git a/extensions-builtin/Lora/network_hada.py b/extensions-builtin/Lora/network_hada.py new file mode 100644 index 000000000..5fcb0695f --- /dev/null +++ b/extensions-builtin/Lora/network_hada.py @@ -0,0 +1,55 @@ +import lyco_helpers +import network + + +class ModuleTypeHada(network.ModuleType): + def create_module(self, net: network.Network, weights: network.NetworkWeights): + if all(x in weights.w for x in ["hada_w1_a", "hada_w1_b", "hada_w2_a", "hada_w2_b"]): + return NetworkModuleHada(net, weights) + + return None + + +class NetworkModuleHada(network.NetworkModule): + def __init__(self, net: network.Network, weights: network.NetworkWeights): + super().__init__(net, weights) + + if hasattr(self.sd_module, 'weight'): + self.shape = self.sd_module.weight.shape + + self.w1a = weights.w["hada_w1_a"] + self.w1b = weights.w["hada_w1_b"] + self.dim = self.w1b.shape[0] + self.w2a = weights.w["hada_w2_a"] + self.w2b = weights.w["hada_w2_b"] + + self.t1 = weights.w.get("hada_t1") + self.t2 = weights.w.get("hada_t2") + + def calc_updown(self, orig_weight): + w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype) + w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype) + w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype) + w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype) + + output_shape = [w1a.size(0), w1b.size(1)] + + if self.t1 is not None: + output_shape = [w1a.size(1), w1b.size(1)] + t1 = self.t1.to(orig_weight.device, dtype=orig_weight.dtype) + updown1 = lyco_helpers.make_weight_cp(t1, w1a, w1b) + output_shape += t1.shape[2:] + else: + if len(w1b.shape) == 4: + output_shape += w1b.shape[2:] + updown1 = lyco_helpers.rebuild_conventional(w1a, w1b, output_shape) + + if self.t2 is not None: + t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype) + updown2 = lyco_helpers.make_weight_cp(t2, w2a, w2b) + else: + updown2 = lyco_helpers.rebuild_conventional(w2a, w2b, output_shape) + + updown = updown1 * updown2 + + return self.finalize_updown(updown, orig_weight, output_shape) diff --git a/extensions-builtin/Lora/network_ia3.py b/extensions-builtin/Lora/network_ia3.py new file mode 100644 index 000000000..7edc42497 --- /dev/null +++ b/extensions-builtin/Lora/network_ia3.py @@ -0,0 +1,30 @@ +import network + + +class ModuleTypeIa3(network.ModuleType): + def create_module(self, net: network.Network, weights: network.NetworkWeights): + if all(x in weights.w for x in ["weight"]): + return NetworkModuleIa3(net, weights) + + return None + + +class NetworkModuleIa3(network.NetworkModule): + def __init__(self, net: network.Network, weights: network.NetworkWeights): + super().__init__(net, weights) + + self.w = weights.w["weight"] + self.on_input = weights.w["on_input"].item() + + def calc_updown(self, orig_weight): + w = self.w.to(orig_weight.device, dtype=orig_weight.dtype) + + output_shape = [w.size(0), orig_weight.size(1)] + if self.on_input: + output_shape.reverse() + else: + w = w.reshape(-1, 1) + + updown = orig_weight * w + + return self.finalize_updown(updown, orig_weight, output_shape) diff --git a/extensions-builtin/Lora/network_lokr.py b/extensions-builtin/Lora/network_lokr.py new file mode 100644 index 000000000..340acdab3 --- /dev/null +++ b/extensions-builtin/Lora/network_lokr.py @@ -0,0 +1,64 @@ +import torch + +import lyco_helpers +import network + + +class ModuleTypeLokr(network.ModuleType): + def create_module(self, net: network.Network, weights: network.NetworkWeights): + has_1 = "lokr_w1" in weights.w or ("lokr_w1_a" in weights.w and "lokr_w1_b" in weights.w) + has_2 = "lokr_w2" in weights.w or ("lokr_w2_a" in weights.w and "lokr_w2_b" in weights.w) + if has_1 and has_2: + return NetworkModuleLokr(net, weights) + + return None + + +def make_kron(orig_shape, w1, w2): + if len(w2.shape) == 4: + w1 = w1.unsqueeze(2).unsqueeze(2) + w2 = w2.contiguous() + return torch.kron(w1, w2).reshape(orig_shape) + + +class NetworkModuleLokr(network.NetworkModule): + def __init__(self, net: network.Network, weights: network.NetworkWeights): + super().__init__(net, weights) + + self.w1 = weights.w.get("lokr_w1") + self.w1a = weights.w.get("lokr_w1_a") + self.w1b = weights.w.get("lokr_w1_b") + self.dim = self.w1b.shape[0] if self.w1b is not None else self.dim + self.w2 = weights.w.get("lokr_w2") + self.w2a = weights.w.get("lokr_w2_a") + self.w2b = weights.w.get("lokr_w2_b") + self.dim = self.w2b.shape[0] if self.w2b is not None else self.dim + self.t2 = weights.w.get("lokr_t2") + + def calc_updown(self, orig_weight): + if self.w1 is not None: + w1 = self.w1.to(orig_weight.device, dtype=orig_weight.dtype) + else: + w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype) + w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype) + w1 = w1a @ w1b + + if self.w2 is not None: + w2 = self.w2.to(orig_weight.device, dtype=orig_weight.dtype) + elif self.t2 is None: + w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype) + w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype) + w2 = w2a @ w2b + else: + t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype) + w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype) + w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype) + w2 = lyco_helpers.make_weight_cp(t2, w2a, w2b) + + output_shape = [w1.size(0) * w2.size(0), w1.size(1) * w2.size(1)] + if len(orig_weight.shape) == 4: + output_shape = orig_weight.shape + + updown = make_kron(output_shape, w1, w2) + + return self.finalize_updown(updown, orig_weight, output_shape) diff --git a/extensions-builtin/Lora/network_lora.py b/extensions-builtin/Lora/network_lora.py new file mode 100644 index 000000000..26c0a72c2 --- /dev/null +++ b/extensions-builtin/Lora/network_lora.py @@ -0,0 +1,86 @@ +import torch + +import lyco_helpers +import network +from modules import devices + + +class ModuleTypeLora(network.ModuleType): + def create_module(self, net: network.Network, weights: network.NetworkWeights): + if all(x in weights.w for x in ["lora_up.weight", "lora_down.weight"]): + return NetworkModuleLora(net, weights) + + return None + + +class NetworkModuleLora(network.NetworkModule): + def __init__(self, net: network.Network, weights: network.NetworkWeights): + super().__init__(net, weights) + + self.up_model = self.create_module(weights.w, "lora_up.weight") + self.down_model = self.create_module(weights.w, "lora_down.weight") + self.mid_model = self.create_module(weights.w, "lora_mid.weight", none_ok=True) + + self.dim = weights.w["lora_down.weight"].shape[0] + + def create_module(self, weights, key, none_ok=False): + weight = weights.get(key) + + if weight is None and none_ok: + return None + + is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.MultiheadAttention] + is_conv = type(self.sd_module) in [torch.nn.Conv2d] + + if is_linear: + weight = weight.reshape(weight.shape[0], -1) + module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) + elif is_conv and key == "lora_down.weight" or key == "dyn_up": + if len(weight.shape) == 2: + weight = weight.reshape(weight.shape[0], -1, 1, 1) + + if weight.shape[2] != 1 or weight.shape[3] != 1: + module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False) + else: + module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) + elif is_conv and key == "lora_mid.weight": + module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False) + elif is_conv and key == "lora_up.weight" or key == "dyn_down": + module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) + else: + raise AssertionError(f'Lora layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}') + + with torch.no_grad(): + if weight.shape != module.weight.shape: + weight = weight.reshape(module.weight.shape) + module.weight.copy_(weight) + + module.to(device=devices.cpu, dtype=devices.dtype) + module.weight.requires_grad_(False) + + return module + + def calc_updown(self, orig_weight): + up = self.up_model.weight.to(orig_weight.device, dtype=orig_weight.dtype) + down = self.down_model.weight.to(orig_weight.device, dtype=orig_weight.dtype) + + output_shape = [up.size(0), down.size(1)] + if self.mid_model is not None: + # cp-decomposition + mid = self.mid_model.weight.to(orig_weight.device, dtype=orig_weight.dtype) + updown = lyco_helpers.rebuild_cp_decomposition(up, down, mid) + output_shape += mid.shape[2:] + else: + if len(down.shape) == 4: + output_shape += down.shape[2:] + updown = lyco_helpers.rebuild_conventional(up, down, output_shape, self.network.dyn_dim) + + return self.finalize_updown(updown, orig_weight, output_shape) + + def forward(self, x, y): + self.up_model.to(device=devices.device) + self.down_model.to(device=devices.device) + + return y + self.up_model(self.down_model(x)) * self.multiplier() * self.calc_scale() + + diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py new file mode 100644 index 000000000..17cbe1bb7 --- /dev/null +++ b/extensions-builtin/Lora/networks.py @@ -0,0 +1,468 @@ +import os +import re + +import network +import network_lora +import network_hada +import network_ia3 +import network_lokr +import network_full + +import torch +from typing import Union + +from modules import shared, devices, sd_models, errors, scripts, sd_hijack + +module_types = [ + network_lora.ModuleTypeLora(), + network_hada.ModuleTypeHada(), + network_ia3.ModuleTypeIa3(), + network_lokr.ModuleTypeLokr(), + network_full.ModuleTypeFull(), +] + + +re_digits = re.compile(r"\d+") +re_x_proj = re.compile(r"(.*)_([qkv]_proj)$") +re_compiled = {} + +suffix_conversion = { + "attentions": {}, + "resnets": { + "conv1": "in_layers_2", + "conv2": "out_layers_3", + "time_emb_proj": "emb_layers_1", + "conv_shortcut": "skip_connection", + } +} + + +def convert_diffusers_name_to_compvis(key, is_sd2): + def match(match_list, regex_text): + regex = re_compiled.get(regex_text) + if regex is None: + regex = re.compile(regex_text) + re_compiled[regex_text] = regex + + r = re.match(regex, key) + if not r: + return False + + match_list.clear() + match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()]) + return True + + m = [] + + if match(m, r"lora_unet_conv_in(.*)"): + return f'diffusion_model_input_blocks_0_0{m[0]}' + + if match(m, r"lora_unet_conv_out(.*)"): + return f'diffusion_model_out_2{m[0]}' + + if match(m, r"lora_unet_time_embedding_linear_(\d+)(.*)"): + return f"diffusion_model_time_embed_{m[0] * 2 - 2}{m[1]}" + + if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"): + suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3]) + return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}" + + if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"): + suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2]) + return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}" + + if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"): + suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3]) + return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}" + + if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"): + return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op" + + if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"): + return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv" + + if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"): + if is_sd2: + if 'mlp_fc1' in m[1]: + return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}" + elif 'mlp_fc2' in m[1]: + return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}" + else: + return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}" + + return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}" + + if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"): + if 'mlp_fc1' in m[1]: + return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}" + elif 'mlp_fc2' in m[1]: + return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}" + else: + return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}" + + return key + + +def assign_network_names_to_compvis_modules(sd_model): + network_layer_mapping = {} + + if shared.sd_model.is_sdxl: + for i, embedder in enumerate(shared.sd_model.conditioner.embedders): + if not hasattr(embedder, 'wrapped'): + continue + + for name, module in embedder.wrapped.named_modules(): + network_name = f'{i}_{name.replace(".", "_")}' + network_layer_mapping[network_name] = module + module.network_layer_name = network_name + else: + for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules(): + network_name = name.replace(".", "_") + network_layer_mapping[network_name] = module + module.network_layer_name = network_name + + for name, module in shared.sd_model.model.named_modules(): + network_name = name.replace(".", "_") + network_layer_mapping[network_name] = module + module.network_layer_name = network_name + + sd_model.network_layer_mapping = network_layer_mapping + + +def load_network(name, network_on_disk): + net = network.Network(name, network_on_disk) + net.mtime = os.path.getmtime(network_on_disk.filename) + + sd = sd_models.read_state_dict(network_on_disk.filename) + + # this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0 + if not hasattr(shared.sd_model, 'network_layer_mapping'): + assign_network_names_to_compvis_modules(shared.sd_model) + + keys_failed_to_match = {} + is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping + + matched_networks = {} + + for key_network, weight in sd.items(): + key_network_without_network_parts, network_part = key_network.split(".", 1) + + key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2) + sd_module = shared.sd_model.network_layer_mapping.get(key, None) + + if sd_module is None: + m = re_x_proj.match(key) + if m: + sd_module = shared.sd_model.network_layer_mapping.get(m.group(1), None) + + # SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model" + if sd_module is None and "lora_unet" in key_network_without_network_parts: + key = key_network_without_network_parts.replace("lora_unet", "diffusion_model") + sd_module = shared.sd_model.network_layer_mapping.get(key, None) + elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts: + key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model") + sd_module = shared.sd_model.network_layer_mapping.get(key, None) + + # some SD1 Loras also have correct compvis keys + if sd_module is None: + key = key_network_without_network_parts.replace("lora_te1_text_model", "transformer_text_model") + sd_module = shared.sd_model.network_layer_mapping.get(key, None) + + if sd_module is None: + keys_failed_to_match[key_network] = key + continue + + if key not in matched_networks: + matched_networks[key] = network.NetworkWeights(network_key=key_network, sd_key=key, w={}, sd_module=sd_module) + + matched_networks[key].w[network_part] = weight + + for key, weights in matched_networks.items(): + net_module = None + for nettype in module_types: + net_module = nettype.create_module(net, weights) + if net_module is not None: + break + + if net_module is None: + raise AssertionError(f"Could not find a module type (out of {', '.join([x.__class__.__name__ for x in module_types])}) that would accept those keys: {', '.join(weights.w)}") + + net.modules[key] = net_module + + if keys_failed_to_match: + print(f"Failed to match keys when loading network {network_on_disk.filename}: {keys_failed_to_match}") + + return net + + +def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None): + already_loaded = {} + + for net in loaded_networks: + if net.name in names: + already_loaded[net.name] = net + + loaded_networks.clear() + + networks_on_disk = [available_network_aliases.get(name, None) for name in names] + if any(x is None for x in networks_on_disk): + list_available_networks() + + networks_on_disk = [available_network_aliases.get(name, None) for name in names] + + failed_to_load_networks = [] + + for i, name in enumerate(names): + net = already_loaded.get(name, None) + + network_on_disk = networks_on_disk[i] + + if network_on_disk is not None: + if net is None or os.path.getmtime(network_on_disk.filename) > net.mtime: + try: + net = load_network(name, network_on_disk) + except Exception as e: + errors.display(e, f"loading network {network_on_disk.filename}") + continue + + net.mentioned_name = name + + network_on_disk.read_hash() + + if net is None: + failed_to_load_networks.append(name) + print(f"Couldn't find network with name {name}") + continue + + net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0 + net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0 + net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0 + loaded_networks.append(net) + + if failed_to_load_networks: + sd_hijack.model_hijack.comments.append("Failed to find networks: " + ", ".join(failed_to_load_networks)) + + +def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]): + weights_backup = getattr(self, "network_weights_backup", None) + + if weights_backup is None: + return + + if isinstance(self, torch.nn.MultiheadAttention): + self.in_proj_weight.copy_(weights_backup[0]) + self.out_proj.weight.copy_(weights_backup[1]) + else: + self.weight.copy_(weights_backup) + + +def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]): + """ + Applies the currently selected set of networks to the weights of torch layer self. + If weights already have this particular set of networks applied, does nothing. + If not, restores orginal weights from backup and alters weights according to networks. + """ + + network_layer_name = getattr(self, 'network_layer_name', None) + if network_layer_name is None: + return + + current_names = getattr(self, "network_current_names", ()) + wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks) + + weights_backup = getattr(self, "network_weights_backup", None) + if weights_backup is None: + if isinstance(self, torch.nn.MultiheadAttention): + weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True)) + else: + weights_backup = self.weight.to(devices.cpu, copy=True) + + self.network_weights_backup = weights_backup + + if current_names != wanted_names: + network_restore_weights_from_backup(self) + + for net in loaded_networks: + module = net.modules.get(network_layer_name, None) + if module is not None and hasattr(self, 'weight'): + with torch.no_grad(): + updown = module.calc_updown(self.weight) + + if len(self.weight.shape) == 4 and self.weight.shape[1] == 9: + # inpainting model. zero pad updown to make channel[1] 4 to 9 + updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5)) + + self.weight += updown + continue + + module_q = net.modules.get(network_layer_name + "_q_proj", None) + module_k = net.modules.get(network_layer_name + "_k_proj", None) + module_v = net.modules.get(network_layer_name + "_v_proj", None) + module_out = net.modules.get(network_layer_name + "_out_proj", None) + + if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out: + with torch.no_grad(): + updown_q = module_q.calc_updown(self.in_proj_weight) + updown_k = module_k.calc_updown(self.in_proj_weight) + updown_v = module_v.calc_updown(self.in_proj_weight) + updown_qkv = torch.vstack([updown_q, updown_k, updown_v]) + updown_out = module_out.calc_updown(self.out_proj.weight) + + self.in_proj_weight += updown_qkv + self.out_proj.weight += updown_out + continue + + if module is None: + continue + + print(f'failed to calculate network weights for layer {network_layer_name}') + + self.network_current_names = wanted_names + + +def network_forward(module, input, original_forward): + """ + Old way of applying Lora by executing operations during layer's forward. + Stacking many loras this way results in big performance degradation. + """ + + if len(loaded_networks) == 0: + return original_forward(module, input) + + input = devices.cond_cast_unet(input) + + network_restore_weights_from_backup(module) + network_reset_cached_weight(module) + + y = original_forward(module, input) + + network_layer_name = getattr(module, 'network_layer_name', None) + for lora in loaded_networks: + module = lora.modules.get(network_layer_name, None) + if module is None: + continue + + y = module.forward(y, input) + + return y + + +def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]): + self.network_current_names = () + self.network_weights_backup = None + + +def network_Linear_forward(self, input): + if shared.opts.lora_functional: + return network_forward(self, input, torch.nn.Linear_forward_before_network) + + network_apply_weights(self) + + return torch.nn.Linear_forward_before_network(self, input) + + +def network_Linear_load_state_dict(self, *args, **kwargs): + network_reset_cached_weight(self) + + return torch.nn.Linear_load_state_dict_before_network(self, *args, **kwargs) + + +def network_Conv2d_forward(self, input): + if shared.opts.lora_functional: + return network_forward(self, input, torch.nn.Conv2d_forward_before_network) + + network_apply_weights(self) + + return torch.nn.Conv2d_forward_before_network(self, input) + + +def network_Conv2d_load_state_dict(self, *args, **kwargs): + network_reset_cached_weight(self) + + return torch.nn.Conv2d_load_state_dict_before_network(self, *args, **kwargs) + + +def network_MultiheadAttention_forward(self, *args, **kwargs): + network_apply_weights(self) + + return torch.nn.MultiheadAttention_forward_before_network(self, *args, **kwargs) + + +def network_MultiheadAttention_load_state_dict(self, *args, **kwargs): + network_reset_cached_weight(self) + + return torch.nn.MultiheadAttention_load_state_dict_before_network(self, *args, **kwargs) + + +def list_available_networks(): + available_networks.clear() + available_network_aliases.clear() + forbidden_network_aliases.clear() + available_network_hash_lookup.clear() + forbidden_network_aliases.update({"none": 1, "Addams": 1}) + + os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True) + + candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"])) + candidates += list(shared.walk_files(shared.cmd_opts.lyco_dir_backcompat, allowed_extensions=[".pt", ".ckpt", ".safetensors"])) + for filename in candidates: + if os.path.isdir(filename): + continue + + name = os.path.splitext(os.path.basename(filename))[0] + try: + entry = network.NetworkOnDisk(name, filename) + except OSError: # should catch FileNotFoundError and PermissionError etc. + errors.report(f"Failed to load network {name} from {filename}", exc_info=True) + continue + + available_networks[name] = entry + + if entry.alias in available_network_aliases: + forbidden_network_aliases[entry.alias.lower()] = 1 + + available_network_aliases[name] = entry + available_network_aliases[entry.alias] = entry + + +re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)") + + +def infotext_pasted(infotext, params): + if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]: + return # if the other extension is active, it will handle those fields, no need to do anything + + added = [] + + for k in params: + if not k.startswith("AddNet Model "): + continue + + num = k[13:] + + if params.get("AddNet Module " + num) != "LoRA": + continue + + name = params.get("AddNet Model " + num) + if name is None: + continue + + m = re_network_name.match(name) + if m: + name = m.group(1) + + multiplier = params.get("AddNet Weight A " + num, "1.0") + + added.append(f"") + + if added: + params["Prompt"] += "\n" + "".join(added) + + +available_networks = {} +available_network_aliases = {} +loaded_networks = [] +available_network_hash_lookup = {} +forbidden_network_aliases = {} + +list_available_networks() diff --git a/extensions-builtin/Lora/preload.py b/extensions-builtin/Lora/preload.py index 863dc5c0b..50961be33 100644 --- a/extensions-builtin/Lora/preload.py +++ b/extensions-builtin/Lora/preload.py @@ -4,3 +4,4 @@ from modules import paths def preload(parser): parser.add_argument("--lora-dir", type=str, help="Path to directory with Lora networks.", default=os.path.join(paths.models_path, 'Lora')) + parser.add_argument("--lyco-dir-backcompat", type=str, help="Path to directory with LyCORIS networks (for backawards compatibility; can also use --lyco-dir).", default=os.path.join(paths.models_path, 'LyCORIS')) diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py index e650f469f..cd28afc92 100644 --- a/extensions-builtin/Lora/scripts/lora_script.py +++ b/extensions-builtin/Lora/scripts/lora_script.py @@ -4,69 +4,76 @@ import torch import gradio as gr from fastapi import FastAPI -import lora +import network +import networks +import lora # noqa:F401 import extra_networks_lora import ui_extra_networks_lora from modules import script_callbacks, ui_extra_networks, extra_networks, shared def unload(): - torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora - torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora - torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora - torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_lora - torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_lora - torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_lora + torch.nn.Linear.forward = torch.nn.Linear_forward_before_network + torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_network + torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_network + torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_network + torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_network + torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_network def before_ui(): ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora()) - extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora()) + + extra_network = extra_networks_lora.ExtraNetworkLora() + extra_networks.register_extra_network(extra_network) + extra_networks.register_extra_network_alias(extra_network, "lyco") -if not hasattr(torch.nn, 'Linear_forward_before_lora'): - torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward +if not hasattr(torch.nn, 'Linear_forward_before_network'): + torch.nn.Linear_forward_before_network = torch.nn.Linear.forward -if not hasattr(torch.nn, 'Linear_load_state_dict_before_lora'): - torch.nn.Linear_load_state_dict_before_lora = torch.nn.Linear._load_from_state_dict +if not hasattr(torch.nn, 'Linear_load_state_dict_before_network'): + torch.nn.Linear_load_state_dict_before_network = torch.nn.Linear._load_from_state_dict -if not hasattr(torch.nn, 'Conv2d_forward_before_lora'): - torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward +if not hasattr(torch.nn, 'Conv2d_forward_before_network'): + torch.nn.Conv2d_forward_before_network = torch.nn.Conv2d.forward -if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_lora'): - torch.nn.Conv2d_load_state_dict_before_lora = torch.nn.Conv2d._load_from_state_dict +if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_network'): + torch.nn.Conv2d_load_state_dict_before_network = torch.nn.Conv2d._load_from_state_dict -if not hasattr(torch.nn, 'MultiheadAttention_forward_before_lora'): - torch.nn.MultiheadAttention_forward_before_lora = torch.nn.MultiheadAttention.forward +if not hasattr(torch.nn, 'MultiheadAttention_forward_before_network'): + torch.nn.MultiheadAttention_forward_before_network = torch.nn.MultiheadAttention.forward -if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_lora'): - torch.nn.MultiheadAttention_load_state_dict_before_lora = torch.nn.MultiheadAttention._load_from_state_dict +if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_network'): + torch.nn.MultiheadAttention_load_state_dict_before_network = torch.nn.MultiheadAttention._load_from_state_dict -torch.nn.Linear.forward = lora.lora_Linear_forward -torch.nn.Linear._load_from_state_dict = lora.lora_Linear_load_state_dict -torch.nn.Conv2d.forward = lora.lora_Conv2d_forward -torch.nn.Conv2d._load_from_state_dict = lora.lora_Conv2d_load_state_dict -torch.nn.MultiheadAttention.forward = lora.lora_MultiheadAttention_forward -torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention_load_state_dict +torch.nn.Linear.forward = networks.network_Linear_forward +torch.nn.Linear._load_from_state_dict = networks.network_Linear_load_state_dict +torch.nn.Conv2d.forward = networks.network_Conv2d_forward +torch.nn.Conv2d._load_from_state_dict = networks.network_Conv2d_load_state_dict +torch.nn.MultiheadAttention.forward = networks.network_MultiheadAttention_forward +torch.nn.MultiheadAttention._load_from_state_dict = networks.network_MultiheadAttention_load_state_dict -script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules) +script_callbacks.on_model_loaded(networks.assign_network_names_to_compvis_modules) script_callbacks.on_script_unloaded(unload) script_callbacks.on_before_ui(before_ui) -script_callbacks.on_infotext_pasted(lora.infotext_pasted) +script_callbacks.on_infotext_pasted(networks.infotext_pasted) shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), { - "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None", *lora.available_loras]}, refresh=lora.list_available_loras), + "sd_lora": shared.OptionInfo("None", "Add network to prompt", gr.Dropdown, lambda: {"choices": ["None", *networks.available_networks]}, refresh=networks.list_available_networks), "lora_preferred_name": shared.OptionInfo("Alias from file", "When adding to prompt, refer to Lora by", gr.Radio, {"choices": ["Alias from file", "Filename"]}), "lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"), + "lora_show_all": shared.OptionInfo(False, "Always show all networks on the Lora page").info("otherwise, those detected as for incompatible version of Stable Diffusion will be hidden"), + "lora_hide_unknown_for_versions": shared.OptionInfo([], "Hide networks of unknown versions for model versions", gr.CheckboxGroup, {"choices": ["SD1", "SD2", "SDXL"]}), })) shared.options_templates.update(shared.options_section(('compatibility', "Compatibility"), { - "lora_functional": shared.OptionInfo(False, "Lora: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"), + "lora_functional": shared.OptionInfo(False, "Lora/Networks: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"), })) -def create_lora_json(obj: lora.LoraOnDisk): +def create_lora_json(obj: network.NetworkOnDisk): return { "name": obj.name, "alias": obj.alias, @@ -75,17 +82,17 @@ def create_lora_json(obj: lora.LoraOnDisk): } -def api_loras(_: gr.Blocks, app: FastAPI): +def api_networks(_: gr.Blocks, app: FastAPI): @app.get("/sdapi/v1/loras") async def get_loras(): - return [create_lora_json(obj) for obj in lora.available_loras.values()] + return [create_lora_json(obj) for obj in networks.available_networks.values()] @app.post("/sdapi/v1/refresh-loras") async def refresh_loras(): - return lora.list_available_loras() + return networks.list_available_networks() -script_callbacks.on_app_started(api_loras) +script_callbacks.on_app_started(api_networks) re_lora = re.compile(" {background_image}
- {edit_button} {metadata_button} + {edit_button}
diff --git a/javascript/badScaleChecker.js b/javascript/badScaleChecker.js deleted file mode 100644 index 625ad309d..000000000 --- a/javascript/badScaleChecker.js +++ /dev/null @@ -1,108 +0,0 @@ -(function() { - var ignore = localStorage.getItem("bad-scale-ignore-it") == "ignore-it"; - - function getScale() { - var ratio = 0, - screen = window.screen, - ua = navigator.userAgent.toLowerCase(); - - if (window.devicePixelRatio !== undefined) { - ratio = window.devicePixelRatio; - } else if (~ua.indexOf('msie')) { - if (screen.deviceXDPI && screen.logicalXDPI) { - ratio = screen.deviceXDPI / screen.logicalXDPI; - } - } else if (window.outerWidth !== undefined && window.innerWidth !== undefined) { - ratio = window.outerWidth / window.innerWidth; - } - - return ratio == 0 ? 0 : Math.round(ratio * 100); - } - - var showing = false; - - var div = document.createElement("div"); - div.style.position = "fixed"; - div.style.top = "0px"; - div.style.left = "0px"; - div.style.width = "100vw"; - div.style.backgroundColor = "firebrick"; - div.style.textAlign = "center"; - div.style.zIndex = 99; - - var b = document.createElement("b"); - b.innerHTML = 'Bad Scale: ??% '; - - div.appendChild(b); - - var note1 = document.createElement("p"); - note1.innerHTML = "Change your browser or your computer settings!"; - note1.title = 'Just make sure "computer-scale" * "browser-scale" = 100% ,\n' + - "you can keep your computer-scale and only change this page's scale,\n" + - "for example: your computer-scale is 125%, just use [\"CTRL\"+\"-\"] to make your browser-scale of this page to 80%."; - div.appendChild(note1); - - var note2 = document.createElement("p"); - note2.innerHTML = " Otherwise, it will cause this page to not function properly!"; - note2.title = "When you click \"Copy image to: [inpaint sketch]\" in some img2img's tab,\n" + - "if scale<100% the canvas will be invisible,\n" + - "else if scale>100% this page will take large amount of memory and CPU performance."; - div.appendChild(note2); - - var btn = document.createElement("button"); - btn.innerHTML = "Click here to ignore"; - - div.appendChild(btn); - - function tryShowTopBar(scale) { - if (showing) return; - - b.innerHTML = 'Bad Scale: ' + scale + '% '; - - var updateScaleTimer = setInterval(function() { - var newScale = getScale(); - b.innerHTML = 'Bad Scale: ' + newScale + '% '; - if (newScale == 100) { - var p = div.parentNode; - if (p != null) p.removeChild(div); - showing = false; - clearInterval(updateScaleTimer); - check(); - } - }, 999); - - btn.onclick = function() { - clearInterval(updateScaleTimer); - var p = div.parentNode; - if (p != null) p.removeChild(div); - ignore = true; - showing = false; - localStorage.setItem("bad-scale-ignore-it", "ignore-it"); - }; - - document.body.appendChild(div); - } - - function check() { - if (!ignore) { - var timer = setInterval(function() { - var scale = getScale(); - if (scale != 100 && !ignore) { - tryShowTopBar(scale); - clearInterval(timer); - } - if (ignore) { - clearInterval(timer); - } - }, 999); - } - } - - if (document.readyState != "complete") { - document.onreadystatechange = function() { - if (document.readyState != "complete") check(); - }; - } else { - check(); - } -})(); diff --git a/javascript/extraNetworks.js b/javascript/extraNetworks.js index e453094a1..5582a6e5d 100644 --- a/javascript/extraNetworks.js +++ b/javascript/extraNetworks.js @@ -213,7 +213,7 @@ function popup(contents) { globalPopupInner.classList.add('global-popup-inner'); globalPopup.appendChild(globalPopupInner); - gradioApp().appendChild(globalPopup); + gradioApp().querySelector('.main').appendChild(globalPopup); } globalPopupInner.innerHTML = ''; diff --git a/javascript/hints.js b/javascript/hints.js index 4167cb28b..6de9372e8 100644 --- a/javascript/hints.js +++ b/javascript/hints.js @@ -190,3 +190,14 @@ onUiUpdate(function(mutationRecords) { tooltipCheckTimer = setTimeout(processTooltipCheckNodes, 1000); } }); + +onUiLoaded(function() { + for (var comp of window.gradio_config.components) { + if (comp.props.webui_tooltip && comp.props.elem_id) { + var elem = gradioApp().getElementById(comp.props.elem_id); + if (elem) { + elem.title = comp.props.webui_tooltip; + } + } + } +}); diff --git a/javascript/ui.js b/javascript/ui.js index d70a681bf..abf23a78c 100644 --- a/javascript/ui.js +++ b/javascript/ui.js @@ -152,7 +152,11 @@ function submit() { showSubmitButtons('txt2img', false); var id = randomId(); - localStorage.setItem("txt2img_task_id", id); + try { + localStorage.setItem("txt2img_task_id", id); + } catch (e) { + console.warn(`Failed to save txt2img task id to localStorage: ${e}`); + } requestProgress(id, gradioApp().getElementById('txt2img_gallery_container'), gradioApp().getElementById('txt2img_gallery'), function() { showSubmitButtons('txt2img', true); @@ -171,7 +175,11 @@ function submit_img2img() { showSubmitButtons('img2img', false); var id = randomId(); - localStorage.setItem("img2img_task_id", id); + try { + localStorage.setItem("img2img_task_id", id); + } catch (e) { + console.warn(`Failed to save img2img task id to localStorage: ${e}`); + } requestProgress(id, gradioApp().getElementById('img2img_gallery_container'), gradioApp().getElementById('img2img_gallery'), function() { showSubmitButtons('img2img', true); @@ -191,8 +199,6 @@ function restoreProgressTxt2img() { showRestoreProgressButton("txt2img", false); var id = localStorage.getItem("txt2img_task_id"); - id = localStorage.getItem("txt2img_task_id"); - if (id) { requestProgress(id, gradioApp().getElementById('txt2img_gallery_container'), gradioApp().getElementById('txt2img_gallery'), function() { showSubmitButtons('txt2img', true); diff --git a/launch.py b/launch.py index b103c8f3a..e4c2ce99e 100644 --- a/launch.py +++ b/launch.py @@ -1,6 +1,5 @@ from modules import launch_utils - args = launch_utils.args python = launch_utils.python git = launch_utils.git @@ -18,6 +17,7 @@ run_pip = launch_utils.run_pip check_run_python = launch_utils.check_run_python git_clone = launch_utils.git_clone git_pull_recursive = launch_utils.git_pull_recursive +list_extensions = launch_utils.list_extensions run_extension_installer = launch_utils.run_extension_installer prepare_environment = launch_utils.prepare_environment configure_for_tests = launch_utils.configure_for_tests @@ -25,8 +25,11 @@ start = launch_utils.start def main(): - if not args.skip_prepare_environment: - prepare_environment() + launch_utils.startup_timer.record("initial startup") + + with launch_utils.startup_timer.subcategory("prepare environment"): + if not args.skip_prepare_environment: + prepare_environment() if args.test_server: configure_for_tests() diff --git a/modules/api/api.py b/modules/api/api.py index 2a4cd8a20..908c45142 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -15,7 +15,7 @@ from fastapi.encoders import jsonable_encoder from secrets import compare_digest import modules.shared as shared -from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart +from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart, shared_items from modules.api import models from modules.shared import opts from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images @@ -197,6 +197,7 @@ class Api: self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[models.PromptStyleItem]) self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=models.EmbeddingsResponse) self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"]) + self.add_api_route("/sdapi/v1/refresh-vae", self.refresh_vae, methods=["POST"]) self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=models.CreateResponse) self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=models.CreateResponse) self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=models.PreprocessResponse) @@ -333,14 +334,17 @@ class Api: p.outpath_grids = opts.outdir_txt2img_grids p.outpath_samples = opts.outdir_txt2img_samples - shared.state.begin(job="scripts_txt2img") - if selectable_scripts is not None: - p.script_args = script_args - processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here - else: - p.script_args = tuple(script_args) # Need to pass args as tuple here - processed = process_images(p) - shared.state.end() + try: + shared.state.begin(job="scripts_txt2img") + if selectable_scripts is not None: + p.script_args = script_args + processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here + else: + p.script_args = tuple(script_args) # Need to pass args as tuple here + processed = process_images(p) + finally: + shared.state.end() + shared.total_tqdm.clear() b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else [] @@ -390,14 +394,17 @@ class Api: p.outpath_grids = opts.outdir_img2img_grids p.outpath_samples = opts.outdir_img2img_samples - shared.state.begin(job="scripts_img2img") - if selectable_scripts is not None: - p.script_args = script_args - processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here - else: - p.script_args = tuple(script_args) # Need to pass args as tuple here - processed = process_images(p) - shared.state.end() + try: + shared.state.begin(job="scripts_img2img") + if selectable_scripts is not None: + p.script_args = script_args + processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here + else: + p.script_args = tuple(script_args) # Need to pass args as tuple here + processed = process_images(p) + finally: + shared.state.end() + shared.total_tqdm.clear() b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else [] @@ -604,6 +611,10 @@ class Api: with self.queue_lock: shared.refresh_checkpoints() + def refresh_vae(self): + with self.queue_lock: + shared_items.refresh_vae_list() + def create_embedding(self, args: dict): try: shared.state.begin(job="create_embedding") @@ -720,9 +731,9 @@ class Api: cuda = {'error': f'{err}'} return models.MemoryResponse(ram=ram, cuda=cuda) - def launch(self, server_name, port): + def launch(self, server_name, port, root_path): self.app.include_router(self.router) - uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=shared.cmd_opts.timeout_keep_alive) + uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=shared.cmd_opts.timeout_keep_alive, root_path=root_path) def kill_webui(self): restart.stop_program() diff --git a/modules/api/models.py b/modules/api/models.py index b56830714..800c9b93f 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -1,4 +1,5 @@ import inspect + from pydantic import BaseModel, Field, create_model from typing import Any, Optional from typing_extensions import Literal @@ -207,11 +208,10 @@ class PreprocessResponse(BaseModel): fields = {} for key, metadata in opts.data_labels.items(): value = opts.data.get(key) - optType = opts.typemap.get(type(metadata.default), type(value)) + optType = opts.typemap.get(type(metadata.default), type(metadata.default)) if metadata.default else Any - if (metadata is not None): - fields.update({key: (Optional[optType], Field( - default=metadata.default ,description=metadata.label))}) + if metadata is not None: + fields.update({key: (Optional[optType], Field(default=metadata.default, description=metadata.label))}) else: fields.update({key: (Optional[optType], Field())}) diff --git a/modules/call_queue.py b/modules/call_queue.py index 61aa240fb..f2eb17d61 100644 --- a/modules/call_queue.py +++ b/modules/call_queue.py @@ -3,7 +3,7 @@ import html import threading import time -from modules import shared, progress, errors +from modules import shared, progress, errors, devices queue_lock = threading.Lock() @@ -75,6 +75,8 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False): error_message = f'{type(e).__name__}: {e}' res = extra_outputs_array + [f"
{html.escape(error_message)}
"] + devices.torch_gc() + shared.state.skipped = False shared.state.interrupted = False shared.state.job_count = 0 diff --git a/modules/cmd_args.py b/modules/cmd_args.py index ae78f469e..64f21e011 100644 --- a/modules/cmd_args.py +++ b/modules/cmd_args.py @@ -13,8 +13,10 @@ parser.add_argument("--reinstall-xformers", action='store_true', help="launch.py parser.add_argument("--reinstall-torch", action='store_true', help="launch.py argument: install the appropriate version of torch even if you have some version already installed") parser.add_argument("--update-check", action='store_true', help="launch.py argument: check for updates at startup") parser.add_argument("--test-server", action='store_true', help="launch.py argument: configure server for testing") +parser.add_argument("--log-startup", action='store_true', help="launch.py argument: print a detailed log of what's happening at startup") parser.add_argument("--skip-prepare-environment", action='store_true', help="launch.py argument: skip all environment preparation") parser.add_argument("--skip-install", action='store_true', help="launch.py argument: skip installation of packages") +parser.add_argument("--do-not-download-clip", action='store_true', help="do not download CLIP model even if it's not included in the checkpoint") parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored") parser.add_argument("--config", type=str, default=sd_default_config, help="path to config which constructs model",) parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",) @@ -65,6 +67,7 @@ parser.add_argument("--opt-sdp-no-mem-attention", action='store_true', help="pre parser.add_argument("--disable-opt-split-attention", action='store_true', help="prefer no cross-attention layer optimization for automatic choice of optimization") parser.add_argument("--disable-nan-check", action='store_true', help="do not check if produced images/latent spaces have nans; useful for running without a checkpoint in CI") parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for specified modules", default=[], type=str.lower) +parser.add_argument("--disable-model-loading-ram-optimization", action='store_true', help="disable an optimization that reduces RAM use when loading a model") parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests") parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None) parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False) @@ -109,3 +112,5 @@ parser.add_argument('--subpath', type=str, help='customize the subpath for gradi parser.add_argument('--add-stop-route', action='store_true', help='add /_stop route to stop server') parser.add_argument('--api-server-stop', action='store_true', help='enable server stop/restart/kill via api') parser.add_argument('--timeout-keep-alive', type=int, default=30, help='set timeout_keep_alive for uvicorn') +parser.add_argument("--disable-all-extensions", action='store_true', help="prevent all extensions from running regardless of any other settings", default=False) +parser.add_argument("--disable-extra-extensions", action='store_true', help=" prevent all extensions except built-in from running regardless of any other settings", default=False) diff --git a/modules/devices.py b/modules/devices.py index 57e51da30..00a00b18a 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -3,7 +3,7 @@ import contextlib from functools import lru_cache import torch -from modules import errors +from modules import errors, rng_philox if sys.platform == "darwin": from modules import mac_specific @@ -71,14 +71,17 @@ def enable_tf32(): torch.backends.cudnn.allow_tf32 = True - errors.run(enable_tf32, "Enabling TF32") -cpu = torch.device("cpu") -device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None -dtype = torch.float16 -dtype_vae = torch.float16 -dtype_unet = torch.float16 +cpu: torch.device = torch.device("cpu") +device: torch.device = None +device_interrogate: torch.device = None +device_gfpgan: torch.device = None +device_esrgan: torch.device = None +device_codeformer: torch.device = None +dtype: torch.dtype = torch.float16 +dtype_vae: torch.dtype = torch.float16 +dtype_unet: torch.dtype = torch.float16 unet_needs_upcast = False @@ -90,23 +93,87 @@ def cond_cast_float(input): return input.float() if unet_needs_upcast else input +nv_rng = None + + def randn(seed, shape): + """Generate a tensor with random numbers from a normal distribution using seed. + + Uses the seed parameter to set the global torch seed; to generate more with that seed, use randn_like/randn_without_seed.""" + from modules.shared import opts - torch.manual_seed(seed) + manual_seed(seed) + + if opts.randn_source == "NV": + return torch.asarray(nv_rng.randn(shape), device=device) + if opts.randn_source == "CPU" or device.type == 'mps': return torch.randn(shape, device=cpu).to(device) + return torch.randn(shape, device=device) +def randn_local(seed, shape): + """Generate a tensor with random numbers from a normal distribution using seed. + + Does not change the global random number generator. You can only generate the seed's first tensor using this function.""" + + from modules.shared import opts + + if opts.randn_source == "NV": + rng = rng_philox.Generator(seed) + return torch.asarray(rng.randn(shape), device=device) + + local_device = cpu if opts.randn_source == "CPU" or device.type == 'mps' else device + local_generator = torch.Generator(local_device).manual_seed(int(seed)) + return torch.randn(shape, device=local_device, generator=local_generator).to(device) + + +def randn_like(x): + """Generate a tensor with random numbers from a normal distribution using the previously initialized genrator. + + Use either randn() or manual_seed() to initialize the generator.""" + + from modules.shared import opts + + if opts.randn_source == "NV": + return torch.asarray(nv_rng.randn(x.shape), device=x.device, dtype=x.dtype) + + if opts.randn_source == "CPU" or x.device.type == 'mps': + return torch.randn_like(x, device=cpu).to(x.device) + + return torch.randn_like(x) + + def randn_without_seed(shape): + """Generate a tensor with random numbers from a normal distribution using the previously initialized genrator. + + Use either randn() or manual_seed() to initialize the generator.""" + from modules.shared import opts + if opts.randn_source == "NV": + return torch.asarray(nv_rng.randn(shape), device=device) + if opts.randn_source == "CPU" or device.type == 'mps': return torch.randn(shape, device=cpu).to(device) + return torch.randn(shape, device=device) +def manual_seed(seed): + """Set up a global random number generator using the specified seed.""" + from modules.shared import opts + + if opts.randn_source == "NV": + global nv_rng + nv_rng = rng_philox.Generator(seed) + return + + torch.manual_seed(seed) + + def autocast(disable=False): from modules import shared diff --git a/modules/errors.py b/modules/errors.py index 5271a9fe1..192cd8ffd 100644 --- a/modules/errors.py +++ b/modules/errors.py @@ -14,7 +14,8 @@ def record_exception(): if exception_records and exception_records[-1] == e: return - exception_records.append((e, tb)) + from modules import sysinfo + exception_records.append(sysinfo.format_exception(e, tb)) if len(exception_records) > 5: exception_records.pop(0) @@ -83,3 +84,53 @@ def run(code, task): code() except Exception as e: display(task, e) + + +def check_versions(): + from packaging import version + from modules import shared + + import torch + import gradio + + expected_torch_version = "2.0.0" + expected_xformers_version = "0.0.20" + expected_gradio_version = "3.39.0" + + if version.parse(torch.__version__) < version.parse(expected_torch_version): + print_error_explanation(f""" +You are running torch {torch.__version__}. +The program is tested to work with torch {expected_torch_version}. +To reinstall the desired version, run with commandline flag --reinstall-torch. +Beware that this will cause a lot of large files to be downloaded, as well as +there are reports of issues with training tab on the latest version. + +Use --skip-version-check commandline argument to disable this check. + """.strip()) + + if shared.xformers_available: + import xformers + + if version.parse(xformers.__version__) < version.parse(expected_xformers_version): + print_error_explanation(f""" +You are running xformers {xformers.__version__}. +The program is tested to work with xformers {expected_xformers_version}. +To reinstall the desired version, run with commandline flag --reinstall-xformers. + +Use --skip-version-check commandline argument to disable this check. + """.strip()) + + if gradio.__version__ != expected_gradio_version: + print_error_explanation(f""" +You are running gradio {gradio.__version__}. +The program is designed to work with gradio {expected_gradio_version}. +Using a different version of gradio is extremely likely to break the program. + +Reasons why you have the mismatched gradio version can be: + - you use --skip-install flag. + - you use webui.py to start the program instead of launch.py. + - an extension installs the incompatible gradio version. + +Use --skip-version-check commandline argument to disable this check. + """.strip()) + diff --git a/modules/extensions.py b/modules/extensions.py index c561159af..e4633af40 100644 --- a/modules/extensions.py +++ b/modules/extensions.py @@ -11,9 +11,9 @@ os.makedirs(extensions_dir, exist_ok=True) def active(): - if shared.opts.disable_all_extensions == "all": + if shared.cmd_opts.disable_all_extensions or shared.opts.disable_all_extensions == "all": return [] - elif shared.opts.disable_all_extensions == "extra": + elif shared.cmd_opts.disable_extra_extensions or shared.opts.disable_all_extensions == "extra": return [x for x in extensions if x.enabled and x.is_builtin] else: return [x for x in extensions if x.enabled] @@ -56,10 +56,12 @@ class Extension: self.do_read_info_from_repo() return self.to_dict() - - d = cache.cached_data_for_file('extensions-git', self.name, os.path.join(self.path, ".git"), read_from_repo) - self.from_dict(d) - self.status = 'unknown' + try: + d = cache.cached_data_for_file('extensions-git', self.name, os.path.join(self.path, ".git"), read_from_repo) + self.from_dict(d) + except FileNotFoundError: + pass + self.status = 'unknown' if self.status == '' else self.status def do_read_info_from_repo(self): repo = None @@ -139,8 +141,12 @@ def list_extensions(): if not os.path.isdir(extensions_dir): return - if shared.opts.disable_all_extensions == "all": + if shared.cmd_opts.disable_all_extensions: + print("*** \"--disable-all-extensions\" arg was used, will not load any extensions ***") + elif shared.opts.disable_all_extensions == "all": print("*** \"Disable all extensions\" option was set, will not load any extensions ***") + elif shared.cmd_opts.disable_extra_extensions: + print("*** \"--disable-extra-extensions\" arg was used, will only load built-in extensions ***") elif shared.opts.disable_all_extensions == "extra": print("*** \"Disable all extensions\" option was set, will only load built-in extensions ***") diff --git a/modules/extra_networks.py b/modules/extra_networks.py index 41799b0a9..6ae07e91b 100644 --- a/modules/extra_networks.py +++ b/modules/extra_networks.py @@ -4,16 +4,22 @@ from collections import defaultdict from modules import errors extra_network_registry = {} +extra_network_aliases = {} def initialize(): extra_network_registry.clear() + extra_network_aliases.clear() def register_extra_network(extra_network): extra_network_registry[extra_network.name] = extra_network +def register_extra_network_alias(extra_network, alias): + extra_network_aliases[alias] = extra_network + + def register_default_extra_networks(): from modules.extra_networks_hypernet import ExtraNetworkHypernet register_extra_network(ExtraNetworkHypernet()) @@ -82,20 +88,26 @@ def activate(p, extra_network_data): """call activate for extra networks in extra_network_data in specified order, then call activate for all remaining registered networks with an empty argument list""" + activated = [] + for extra_network_name, extra_network_args in extra_network_data.items(): extra_network = extra_network_registry.get(extra_network_name, None) + + if extra_network is None: + extra_network = extra_network_aliases.get(extra_network_name, None) + if extra_network is None: print(f"Skipping unknown extra network: {extra_network_name}") continue try: extra_network.activate(p, extra_network_args) + activated.append(extra_network) except Exception as e: errors.display(e, f"activating extra network {extra_network_name} with arguments {extra_network_args}") for extra_network_name, extra_network in extra_network_registry.items(): - args = extra_network_data.get(extra_network_name, None) - if args is not None: + if extra_network in activated: continue try: diff --git a/modules/extras.py b/modules/extras.py index e9c0263ec..2a310ae3f 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -7,7 +7,7 @@ import json import torch import tqdm -from modules import shared, images, sd_models, sd_vae, sd_models_config +from modules import shared, images, sd_models, sd_vae, sd_models_config, errors from modules.ui_common import plaintext_to_html import gradio as gr import safetensors.torch @@ -72,7 +72,20 @@ def to_half(tensor, enable): return tensor -def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata): +def read_metadata(primary_model_name, secondary_model_name, tertiary_model_name): + metadata = {} + + for checkpoint_name in [primary_model_name, secondary_model_name, tertiary_model_name]: + checkpoint_info = sd_models.checkpoints_list.get(checkpoint_name, None) + if checkpoint_info is None: + continue + + metadata.update(checkpoint_info.metadata) + + return json.dumps(metadata, indent=4, ensure_ascii=False) + + +def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata, add_merge_recipe, copy_metadata_fields, metadata_json): shared.state.begin(job="model-merge") def fail(message): @@ -241,11 +254,25 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_ shared.state.textinfo = "Saving" print(f"Saving to {output_modelname}...") - metadata = None + metadata = {} + + if save_metadata and copy_metadata_fields: + if primary_model_info: + metadata.update(primary_model_info.metadata) + if secondary_model_info: + metadata.update(secondary_model_info.metadata) + if tertiary_model_info: + metadata.update(tertiary_model_info.metadata) if save_metadata: - metadata = {"format": "pt"} + try: + metadata.update(json.loads(metadata_json)) + except Exception as e: + errors.display(e, "readin metadata from json") + metadata["format"] = "pt" + + if save_metadata and add_merge_recipe: merge_recipe = { "type": "webui", # indicate this model was merged with webui's built-in merger "primary_model_hash": primary_model_info.sha256, @@ -261,7 +288,6 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_ "is_inpainting": result_is_inpainting_model, "is_instruct_pix2pix": result_is_instruct_pix2pix_model } - metadata["sd_merge_recipe"] = json.dumps(merge_recipe) sd_merge_models = {} @@ -281,11 +307,12 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_ if tertiary_model_info: add_model_metadata(tertiary_model_info) + metadata["sd_merge_recipe"] = json.dumps(merge_recipe) metadata["sd_merge_models"] = json.dumps(sd_merge_models) _, extension = os.path.splitext(output_modelname) if extension.lower() == ".safetensors": - safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata) + safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata if len(metadata)>0 else None) else: torch.save(theta_0, output_modelname) diff --git a/modules/gradio_extensons.py b/modules/gradio_extensons.py new file mode 100644 index 000000000..5af7fd8ec --- /dev/null +++ b/modules/gradio_extensons.py @@ -0,0 +1,60 @@ +import gradio as gr + +from modules import scripts + +def add_classes_to_gradio_component(comp): + """ + this adds gradio-* to the component for css styling (ie gradio-button to gr.Button), as well as some others + """ + + comp.elem_classes = [f"gradio-{comp.get_block_name()}", *(comp.elem_classes or [])] + + if getattr(comp, 'multiselect', False): + comp.elem_classes.append('multiselect') + + +def IOComponent_init(self, *args, **kwargs): + self.webui_tooltip = kwargs.pop('tooltip', None) + + if scripts.scripts_current is not None: + scripts.scripts_current.before_component(self, **kwargs) + + scripts.script_callbacks.before_component_callback(self, **kwargs) + + res = original_IOComponent_init(self, *args, **kwargs) + + add_classes_to_gradio_component(self) + + scripts.script_callbacks.after_component_callback(self, **kwargs) + + if scripts.scripts_current is not None: + scripts.scripts_current.after_component(self, **kwargs) + + return res + + +def Block_get_config(self): + config = original_Block_get_config(self) + + webui_tooltip = getattr(self, 'webui_tooltip', None) + if webui_tooltip: + config["webui_tooltip"] = webui_tooltip + + return config + + +def BlockContext_init(self, *args, **kwargs): + res = original_BlockContext_init(self, *args, **kwargs) + + add_classes_to_gradio_component(self) + + return res + + +original_IOComponent_init = gr.components.IOComponent.__init__ +original_Block_get_config = gr.blocks.Block.get_config +original_BlockContext_init = gr.blocks.BlockContext.__init__ + +gr.components.IOComponent.__init__ = IOComponent_init +gr.blocks.Block.get_config = Block_get_config +gr.blocks.BlockContext.__init__ = BlockContext_init diff --git a/modules/images.py b/modules/images.py index fb5d2e750..38aa933d6 100644 --- a/modules/images.py +++ b/modules/images.py @@ -363,7 +363,7 @@ class FilenameGenerator: 'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False), 'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False), 'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash), - 'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.model_name, replace_spaces=False), + 'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.name_for_extra, replace_spaces=False), 'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'), 'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime], [datetime