From 738e133b24e27ac8d7babeb4714053204636d2c8 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Tue, 29 Aug 2023 08:54:09 +0300 Subject: [PATCH] Merge pull request #12818 from catboxanon/sgm Add option to align with sgm repo's sampling implementation --- modules/sd_samplers_kdiffusion.py | 14 ++++++++++++-- modules/shared_options.py | 1 + scripts/xyz_grid.py | 1 + 3 files changed, 14 insertions(+), 2 deletions(-) diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index b9e0d5776..a8a2735f4 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -144,7 +144,13 @@ class KDiffusionSampler(sd_samplers_common.Sampler): sigmas = self.get_sigmas(p, steps) sigma_sched = sigmas[steps - t_enc - 1:] - xi = x + noise * sigma_sched[0] + if opts.sgm_noise_multiplier: + p.extra_generation_params["SGM noise multiplier"] = True + noise_multiplier = torch.sqrt(1.0 + sigma_sched[0] ** 2.0) + else: + noise_multiplier = sigma_sched[0] + + xi = x + noise * noise_multiplier if opts.img2img_extra_noise > 0: p.extra_generation_params["Extra noise"] = opts.img2img_extra_noise @@ -197,7 +203,11 @@ class KDiffusionSampler(sd_samplers_common.Sampler): sigmas = self.get_sigmas(p, steps) - x = x * sigmas[0] + if opts.sgm_noise_multiplier: + p.extra_generation_params["SGM noise multiplier"] = True + x = x * torch.sqrt(1.0 + sigmas[0] ** 2.0) + else: + x = x * sigmas[0] extra_params_kwargs = self.initialize(p) parameters = inspect.signature(self.func).parameters diff --git a/modules/shared_options.py b/modules/shared_options.py index 0f054f472..78652ea27 100644 --- a/modules/shared_options.py +++ b/modules/shared_options.py @@ -309,6 +309,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" 'rho': OptionInfo(0.0, "rho", gr.Number, infotext='Schedule rho').info("0 = default (7 for karras, 1 for polyexponential); higher values result in a steeper noise schedule (decreases faster)"), 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}, infotext='ENSD').info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"), 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma", infotext='Discard penultimate sigma').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"), + 'sgm_noise_multiplier': OptionInfo(False, "SGM noise multiplier", infotext='SGM noise multplier').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12818").info("Match initial noise to official SDXL implementation - only useful for reproducing images"), 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}, infotext='UniPC variant'), 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}, infotext='UniPC skip type'), 'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}, infotext='UniPC order').info("must be < sampling steps"), diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index 517d6332e..939d86053 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -265,6 +265,7 @@ axis_options = [ AxisOption("Token merging ratio", float, apply_override('token_merging_ratio')), AxisOption("Token merging ratio high-res", float, apply_override('token_merging_ratio_hr')), AxisOption("Always discard next-to-last sigma", str, apply_override('always_discard_next_to_last_sigma', boolean=True), choices=boolean_choice(reverse=True)), + AxisOption("SGM noise multiplier", str, apply_override('sgm_noise_multiplier', boolean=True), choices=boolean_choice(reverse=True)), AxisOption("Refiner checkpoint", str, apply_field('refiner_checkpoint'), format_value=format_remove_path, confirm=confirm_checkpoints_or_none, cost=1.0, choices=lambda: ['None'] + sorted(sd_models.checkpoints_list, key=str.casefold)), AxisOption("Refiner switch at", float, apply_field('refiner_switch_at')), AxisOption("RNG source", str, apply_override("randn_source"), choices=lambda: ["GPU", "CPU", "NV"]),