From f8640662c56db75d7c16fe9224ada4e2fa81981e Mon Sep 17 00:00:00 2001 From: Andrey Efremov <50556416+AndreyRGW@users.noreply.github.com> Date: Thu, 4 Jul 2024 19:27:08 +0300 Subject: [PATCH] Add Normal and DDIM Schedulers --- modules/sd_schedulers.py | 29 +++++++++++++++++++++++++++++ 1 file changed, 29 insertions(+) diff --git a/modules/sd_schedulers.py b/modules/sd_schedulers.py index 0165e6a02..118beea5d 100644 --- a/modules/sd_schedulers.py +++ b/modules/sd_schedulers.py @@ -76,6 +76,33 @@ def kl_optimal(n, sigma_min, sigma_max, device): sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max) return sigmas +def normal_scheduler(n, sigma_min, sigma_max, inner_model, device, sgm=False, floor=False): + start = inner_model.sigma_to_t(torch.tensor(sigma_max)) + end = inner_model.sigma_to_t(torch.tensor(sigma_min)) + + if sgm: + timesteps = torch.linspace(start, end, n + 1)[:-1] + else: + timesteps = torch.linspace(start, end, n) + + sigs = [] + for x in range(len(timesteps)): + ts = timesteps[x] + sigs.append(inner_model.t_to_sigma(ts)) + sigs += [0.0] + return torch.FloatTensor(sigs).to(device) + +def ddim_scheduler(n, sigma_min, sigma_max, inner_model, device): + sigs = [] + ss = max(len(inner_model.sigmas) // n, 1) + x = 1 + while x < len(inner_model.sigmas): + sigs += [float(inner_model.sigmas[x])] + x += ss + sigs = sigs[::-1] + sigs += [0.0] + return torch.FloatTensor(sigs).to(device) + schedulers = [ Scheduler('automatic', 'Automatic', None), @@ -86,6 +113,8 @@ schedulers = [ Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]), Scheduler('kl_optimal', 'KL Optimal', kl_optimal), Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas), + Scheduler('normal', 'Normal', normal_scheduler, need_inner_model=True), + Scheduler('ddim', 'DDIM', ddim_scheduler, need_inner_model=True), ] schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}