mirror of
https://github.com/lkwq007/stablediffusion-infinity.git
synced 2025-01-09 04:17:37 +08:00
1206 lines
43 KiB
Python
1206 lines
43 KiB
Python
import io
|
|
import base64
|
|
import os
|
|
import sys
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch import autocast
|
|
import diffusers
|
|
|
|
assert tuple(map(int,diffusers.__version__.split("."))) >= (0,9,0), "Please upgrade diffusers to 0.9.0"
|
|
|
|
from diffusers.configuration_utils import FrozenDict
|
|
from diffusers import (
|
|
StableDiffusionPipeline,
|
|
StableDiffusionInpaintPipeline,
|
|
StableDiffusionImg2ImgPipeline,
|
|
StableDiffusionInpaintPipelineLegacy,
|
|
DDIMScheduler,
|
|
LMSDiscreteScheduler,
|
|
DiffusionPipeline,
|
|
StableDiffusionUpscalePipeline,
|
|
DPMSolverMultistepScheduler,
|
|
PNDMScheduler,
|
|
)
|
|
from diffusers.models import AutoencoderKL
|
|
from PIL import Image
|
|
from PIL import ImageOps
|
|
import gradio as gr
|
|
import base64
|
|
import skimage
|
|
import skimage.measure
|
|
import yaml
|
|
import json
|
|
from enum import Enum
|
|
from utils import *
|
|
|
|
try:
|
|
abspath = os.path.abspath(__file__)
|
|
dirname = os.path.dirname(abspath)
|
|
os.chdir(dirname)
|
|
except:
|
|
pass
|
|
|
|
try:
|
|
from interrogate import Interrogator
|
|
except:
|
|
Interrogator = DummyInterrogator
|
|
|
|
USE_NEW_DIFFUSERS = True
|
|
RUN_IN_SPACE = "RUN_IN_HG_SPACE" in os.environ
|
|
|
|
|
|
class ModelChoice(Enum):
|
|
INPAINTING = "stablediffusion-inpainting"
|
|
INPAINTING2 = "stablediffusion-2-inpainting"
|
|
INPAINTING_IMG2IMG = "stablediffusion-inpainting+img2img-1.5"
|
|
MODEL_2_1 = "stablediffusion-2.1"
|
|
MODEL_2_0_V = "stablediffusion-2.0v"
|
|
MODEL_2_0 = "stablediffusion-2.0"
|
|
MODEL_1_5 = "stablediffusion-1.5"
|
|
MODEL_1_4 = "stablediffusion-1.4"
|
|
|
|
|
|
try:
|
|
from sd_grpcserver.pipeline.unified_pipeline import UnifiedPipeline
|
|
except:
|
|
UnifiedPipeline = StableDiffusionInpaintPipeline
|
|
|
|
# sys.path.append("./glid_3_xl_stable")
|
|
|
|
USE_GLID = False
|
|
# try:
|
|
# from glid3xlmodel import GlidModel
|
|
# except:
|
|
# USE_GLID = False
|
|
|
|
try:
|
|
import onnxruntime
|
|
onnx_available = True
|
|
onnx_providers = ["CUDAExecutionProvider", "DmlExecutionProvider", "OpenVINOExecutionProvider", 'CPUExecutionProvider']
|
|
available_providers = onnxruntime.get_available_providers()
|
|
onnx_providers = [item for item in onnx_providers if item in available_providers]
|
|
except:
|
|
onnx_available = False
|
|
onnx_providers = []
|
|
|
|
try:
|
|
cuda_available = torch.cuda.is_available()
|
|
except:
|
|
cuda_available = False
|
|
finally:
|
|
if sys.platform == "darwin":
|
|
device = "mps" if torch.backends.mps.is_available() else "cpu"
|
|
elif cuda_available:
|
|
device = "cuda"
|
|
else:
|
|
device = "cpu"
|
|
|
|
if device != "cuda":
|
|
import contextlib
|
|
|
|
autocast = contextlib.nullcontext
|
|
|
|
with open("config.yaml", "r") as yaml_in:
|
|
yaml_object = yaml.safe_load(yaml_in)
|
|
config_json = json.dumps(yaml_object)
|
|
|
|
|
|
def load_html():
|
|
body, canvaspy = "", ""
|
|
with open("index.html", encoding="utf8") as f:
|
|
body = f.read()
|
|
with open("canvas.py", encoding="utf8") as f:
|
|
canvaspy = f.read()
|
|
body = body.replace("- paths:\n", "")
|
|
body = body.replace(" - ./canvas.py\n", "")
|
|
body = body.replace("from canvas import InfCanvas", canvaspy)
|
|
return body
|
|
|
|
|
|
def test(x):
|
|
x = load_html()
|
|
return f"""<iframe id="sdinfframe" style="width: 100%; height: 600px" name="result" allow="midi; geolocation; microphone; camera;
|
|
display-capture; encrypted-media; vertical-scroll 'none'" sandbox="allow-modals allow-forms
|
|
allow-scripts allow-same-origin allow-popups
|
|
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
|
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
|
|
|
|
|
|
DEBUG_MODE = False
|
|
|
|
try:
|
|
SAMPLING_MODE = Image.Resampling.LANCZOS
|
|
except Exception as e:
|
|
SAMPLING_MODE = Image.LANCZOS
|
|
|
|
try:
|
|
contain_func = ImageOps.contain
|
|
except Exception as e:
|
|
|
|
def contain_func(image, size, method=SAMPLING_MODE):
|
|
# from PIL: https://pillow.readthedocs.io/en/stable/reference/ImageOps.html#PIL.ImageOps.contain
|
|
im_ratio = image.width / image.height
|
|
dest_ratio = size[0] / size[1]
|
|
if im_ratio != dest_ratio:
|
|
if im_ratio > dest_ratio:
|
|
new_height = int(image.height / image.width * size[0])
|
|
if new_height != size[1]:
|
|
size = (size[0], new_height)
|
|
else:
|
|
new_width = int(image.width / image.height * size[1])
|
|
if new_width != size[0]:
|
|
size = (new_width, size[1])
|
|
return image.resize(size, resample=method)
|
|
|
|
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(description="stablediffusion-infinity")
|
|
parser.add_argument("--port", type=int, help="listen port", dest="server_port")
|
|
parser.add_argument("--host", type=str, help="host", dest="server_name")
|
|
parser.add_argument("--share", action="store_true", help="share this app?")
|
|
parser.add_argument("--debug", action="store_true", help="debug mode")
|
|
parser.add_argument("--fp32", action="store_true", help="using full precision")
|
|
parser.add_argument("--lowvram", action="store_true", help="using lowvram mode")
|
|
parser.add_argument("--encrypt", action="store_true", help="using https?")
|
|
parser.add_argument("--ssl_keyfile", type=str, help="path to ssl_keyfile")
|
|
parser.add_argument("--ssl_certfile", type=str, help="path to ssl_certfile")
|
|
parser.add_argument("--ssl_keyfile_password", type=str, help="ssl_keyfile_password")
|
|
parser.add_argument(
|
|
"--auth", nargs=2, metavar=("username", "password"), help="use username password"
|
|
)
|
|
parser.add_argument(
|
|
"--remote_model",
|
|
type=str,
|
|
help="use a model (e.g. dreambooth fined) from huggingface hub",
|
|
default="",
|
|
)
|
|
parser.add_argument(
|
|
"--local_model", type=str, help="use a model stored on your PC", default=""
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
else:
|
|
args = parser.parse_args(["--debug"])
|
|
# args = parser.parse_args(["--debug"])
|
|
if args.auth is not None:
|
|
args.auth = tuple(args.auth)
|
|
|
|
model = {}
|
|
|
|
|
|
def get_token():
|
|
token = ""
|
|
if os.path.exists(".token"):
|
|
with open(".token", "r") as f:
|
|
token = f.read()
|
|
token = os.environ.get("hftoken", token)
|
|
return token
|
|
|
|
|
|
def save_token(token):
|
|
with open(".token", "w") as f:
|
|
f.write(token)
|
|
|
|
|
|
def prepare_scheduler(scheduler):
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
|
new_config = dict(scheduler.config)
|
|
new_config["steps_offset"] = 1
|
|
scheduler._internal_dict = FrozenDict(new_config)
|
|
return scheduler
|
|
|
|
|
|
def my_resize(width, height):
|
|
if width >= 512 and height >= 512:
|
|
return width, height
|
|
if width == height:
|
|
return 512, 512
|
|
smaller = min(width, height)
|
|
larger = max(width, height)
|
|
if larger >= 608:
|
|
return width, height
|
|
factor = 1
|
|
if smaller < 290:
|
|
factor = 2
|
|
elif smaller < 330:
|
|
factor = 1.75
|
|
elif smaller < 384:
|
|
factor = 1.375
|
|
elif smaller < 400:
|
|
factor = 1.25
|
|
elif smaller < 450:
|
|
factor = 1.125
|
|
return int(factor * width) // 8 * 8, int(factor * height) // 8 * 8
|
|
|
|
|
|
def load_learned_embed_in_clip(
|
|
learned_embeds_path, text_encoder, tokenizer, token=None
|
|
):
|
|
# https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb
|
|
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
|
|
|
|
# separate token and the embeds
|
|
trained_token = list(loaded_learned_embeds.keys())[0]
|
|
embeds = loaded_learned_embeds[trained_token]
|
|
|
|
# cast to dtype of text_encoder
|
|
dtype = text_encoder.get_input_embeddings().weight.dtype
|
|
embeds.to(dtype)
|
|
|
|
# add the token in tokenizer
|
|
token = token if token is not None else trained_token
|
|
num_added_tokens = tokenizer.add_tokens(token)
|
|
if num_added_tokens == 0:
|
|
raise ValueError(
|
|
f"The tokenizer already contains the token {token}. Please pass a different `token` that is not already in the tokenizer."
|
|
)
|
|
|
|
# resize the token embeddings
|
|
text_encoder.resize_token_embeddings(len(tokenizer))
|
|
|
|
# get the id for the token and assign the embeds
|
|
token_id = tokenizer.convert_tokens_to_ids(token)
|
|
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
|
|
|
|
|
|
scheduler_dict = {"PLMS": None, "DDIM": None, "K-LMS": None, "DPM": None, "PNDM": None}
|
|
|
|
|
|
class StableDiffusionInpaint:
|
|
def __init__(
|
|
self, token: str = "", model_name: str = "", model_path: str = "", **kwargs,
|
|
):
|
|
self.token = token
|
|
original_checkpoint = False
|
|
if device == "cpu" and onnx_available:
|
|
from diffusers import OnnxStableDiffusionInpaintPipeline
|
|
inpaint = OnnxStableDiffusionInpaintPipeline.from_pretrained(
|
|
model_name,
|
|
revision="onnx",
|
|
provider=onnx_providers[0] if onnx_providers else None
|
|
)
|
|
else:
|
|
if model_path and os.path.exists(model_path):
|
|
if model_path.endswith(".ckpt"):
|
|
original_checkpoint = True
|
|
elif model_path.endswith(".json"):
|
|
model_name = os.path.dirname(model_path)
|
|
else:
|
|
model_name = model_path
|
|
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
|
|
if device == "cuda" and not args.fp32:
|
|
vae.to(torch.float16)
|
|
if original_checkpoint:
|
|
print(f"Converting & Loading {model_path}")
|
|
from convert_checkpoint import convert_checkpoint
|
|
|
|
pipe = convert_checkpoint(model_path, inpainting=True)
|
|
if device == "cuda" and not args.fp32:
|
|
pipe.to(torch.float16)
|
|
inpaint = StableDiffusionInpaintPipeline(
|
|
vae=vae,
|
|
text_encoder=pipe.text_encoder,
|
|
tokenizer=pipe.tokenizer,
|
|
unet=pipe.unet,
|
|
scheduler=pipe.scheduler,
|
|
safety_checker=pipe.safety_checker,
|
|
feature_extractor=pipe.feature_extractor,
|
|
)
|
|
else:
|
|
print(f"Loading {model_name}")
|
|
if device == "cuda" and not args.fp32:
|
|
inpaint = StableDiffusionInpaintPipeline.from_pretrained(
|
|
model_name,
|
|
revision="fp16",
|
|
torch_dtype=torch.float16,
|
|
use_auth_token=token,
|
|
vae=vae,
|
|
)
|
|
else:
|
|
inpaint = StableDiffusionInpaintPipeline.from_pretrained(
|
|
model_name, use_auth_token=token, vae=vae
|
|
)
|
|
if os.path.exists("./embeddings"):
|
|
print("Note that StableDiffusionInpaintPipeline + embeddings is untested")
|
|
for item in os.listdir("./embeddings"):
|
|
if item.endswith(".bin"):
|
|
load_learned_embed_in_clip(
|
|
os.path.join("./embeddings", item),
|
|
inpaint.text_encoder,
|
|
inpaint.tokenizer,
|
|
)
|
|
inpaint.to(device)
|
|
# if device == "mps":
|
|
# _ = text2img("", num_inference_steps=1)
|
|
scheduler_dict["PLMS"] = inpaint.scheduler
|
|
scheduler_dict["DDIM"] = prepare_scheduler(
|
|
DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
)
|
|
scheduler_dict["K-LMS"] = prepare_scheduler(
|
|
LMSDiscreteScheduler(
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
|
|
)
|
|
)
|
|
scheduler_dict["PNDM"] = prepare_scheduler(
|
|
PNDMScheduler(
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
|
|
skip_prk_steps=True
|
|
)
|
|
)
|
|
scheduler_dict["DPM"] = prepare_scheduler(
|
|
DPMSolverMultistepScheduler.from_config(inpaint.scheduler.config)
|
|
)
|
|
self.safety_checker = inpaint.safety_checker
|
|
save_token(token)
|
|
try:
|
|
total_memory = torch.cuda.get_device_properties(0).total_memory // (
|
|
1024 ** 3
|
|
)
|
|
if total_memory <= 5 or args.lowvram:
|
|
inpaint.enable_attention_slicing()
|
|
inpaint.enable_sequential_cpu_offload()
|
|
except:
|
|
pass
|
|
self.inpaint = inpaint
|
|
|
|
def run(
|
|
self,
|
|
image_pil,
|
|
prompt="",
|
|
negative_prompt="",
|
|
guidance_scale=7.5,
|
|
resize_check=True,
|
|
enable_safety=True,
|
|
fill_mode="patchmatch",
|
|
strength=0.75,
|
|
step=50,
|
|
enable_img2img=False,
|
|
use_seed=False,
|
|
seed_val=-1,
|
|
generate_num=1,
|
|
scheduler="",
|
|
scheduler_eta=0.0,
|
|
**kwargs,
|
|
):
|
|
inpaint = self.inpaint
|
|
selected_scheduler = scheduler_dict.get(scheduler, scheduler_dict["PLMS"])
|
|
for item in [inpaint]:
|
|
item.scheduler = selected_scheduler
|
|
if enable_safety or self.safety_checker is None:
|
|
item.safety_checker = self.safety_checker
|
|
else:
|
|
item.safety_checker = lambda images, **kwargs: (images, False)
|
|
width, height = image_pil.size
|
|
sel_buffer = np.array(image_pil)
|
|
img = sel_buffer[:, :, 0:3]
|
|
mask = sel_buffer[:, :, -1]
|
|
nmask = 255 - mask
|
|
process_width = width
|
|
process_height = height
|
|
if resize_check:
|
|
process_width, process_height = my_resize(width, height)
|
|
process_width = process_width * 8 // 8
|
|
process_height = process_height * 8 // 8
|
|
extra_kwargs = {
|
|
"num_inference_steps": step,
|
|
"guidance_scale": guidance_scale,
|
|
"eta": scheduler_eta,
|
|
}
|
|
if USE_NEW_DIFFUSERS:
|
|
extra_kwargs["negative_prompt"] = negative_prompt
|
|
extra_kwargs["num_images_per_prompt"] = generate_num
|
|
if use_seed:
|
|
generator = torch.Generator(inpaint.device).manual_seed(seed_val)
|
|
extra_kwargs["generator"] = generator
|
|
if True:
|
|
if fill_mode == "g_diffuser":
|
|
mask = 255 - mask
|
|
mask = mask[:, :, np.newaxis].repeat(3, axis=2)
|
|
img, mask = functbl[fill_mode](img, mask)
|
|
else:
|
|
img, mask = functbl[fill_mode](img, mask)
|
|
mask = 255 - mask
|
|
mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
|
|
mask = mask.repeat(8, axis=0).repeat(8, axis=1)
|
|
# extra_kwargs["strength"] = strength
|
|
inpaint_func = inpaint
|
|
init_image = Image.fromarray(img)
|
|
mask_image = Image.fromarray(mask)
|
|
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
|
|
if True:
|
|
images = inpaint_func(
|
|
prompt=prompt,
|
|
image=init_image.resize(
|
|
(process_width, process_height), resample=SAMPLING_MODE
|
|
),
|
|
mask_image=mask_image.resize((process_width, process_height)),
|
|
width=process_width,
|
|
height=process_height,
|
|
**extra_kwargs,
|
|
)["images"]
|
|
return images
|
|
|
|
|
|
class StableDiffusion:
|
|
def __init__(
|
|
self,
|
|
token: str = "",
|
|
model_name: str = "runwayml/stable-diffusion-v1-5",
|
|
model_path: str = None,
|
|
inpainting_model: bool = False,
|
|
**kwargs,
|
|
):
|
|
self.token = token
|
|
original_checkpoint = False
|
|
if device=="cpu" and onnx_available:
|
|
from diffusers import OnnxStableDiffusionPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionImg2ImgPipeline
|
|
text2img = OnnxStableDiffusionPipeline.from_pretrained(
|
|
model_name,
|
|
revision="onnx",
|
|
provider=onnx_providers[0] if onnx_providers else None
|
|
)
|
|
inpaint = OnnxStableDiffusionInpaintPipelineLegacy(
|
|
vae_encoder=text2img.vae_encoder,
|
|
vae_decoder=text2img.vae_decoder,
|
|
text_encoder=text2img.text_encoder,
|
|
tokenizer=text2img.tokenizer,
|
|
unet=text2img.unet,
|
|
scheduler=text2img.scheduler,
|
|
safety_checker=text2img.safety_checker,
|
|
feature_extractor=text2img.feature_extractor,
|
|
)
|
|
img2img = OnnxStableDiffusionImg2ImgPipeline(
|
|
vae_encoder=text2img.vae_encoder,
|
|
vae_decoder=text2img.vae_decoder,
|
|
text_encoder=text2img.text_encoder,
|
|
tokenizer=text2img.tokenizer,
|
|
unet=text2img.unet,
|
|
scheduler=text2img.scheduler,
|
|
safety_checker=text2img.safety_checker,
|
|
feature_extractor=text2img.feature_extractor,
|
|
)
|
|
else:
|
|
if model_path and os.path.exists(model_path):
|
|
if model_path.endswith(".ckpt"):
|
|
original_checkpoint = True
|
|
elif model_path.endswith(".json"):
|
|
model_name = os.path.dirname(model_path)
|
|
else:
|
|
model_name = model_path
|
|
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
|
|
if device == "cuda" and not args.fp32:
|
|
vae.to(torch.float16)
|
|
if original_checkpoint:
|
|
print(f"Converting & Loading {model_path}")
|
|
from convert_checkpoint import convert_checkpoint
|
|
|
|
pipe = convert_checkpoint(model_path)
|
|
if device == "cuda" and not args.fp32:
|
|
pipe.to(torch.float16)
|
|
text2img = StableDiffusionPipeline(
|
|
vae=vae,
|
|
text_encoder=pipe.text_encoder,
|
|
tokenizer=pipe.tokenizer,
|
|
unet=pipe.unet,
|
|
scheduler=pipe.scheduler,
|
|
safety_checker=pipe.safety_checker,
|
|
feature_extractor=pipe.feature_extractor,
|
|
)
|
|
else:
|
|
print(f"Loading {model_name}")
|
|
if device == "cuda" and not args.fp32:
|
|
text2img = StableDiffusionPipeline.from_pretrained(
|
|
model_name,
|
|
revision="fp16",
|
|
torch_dtype=torch.float16,
|
|
use_auth_token=token,
|
|
vae=vae,
|
|
)
|
|
else:
|
|
text2img = StableDiffusionPipeline.from_pretrained(
|
|
model_name, use_auth_token=token, vae=vae
|
|
)
|
|
if inpainting_model:
|
|
# can reduce vRAM by reusing models except unet
|
|
text2img_unet = text2img.unet
|
|
del text2img.vae
|
|
del text2img.text_encoder
|
|
del text2img.tokenizer
|
|
del text2img.scheduler
|
|
del text2img.safety_checker
|
|
del text2img.feature_extractor
|
|
import gc
|
|
|
|
gc.collect()
|
|
if device == "cuda" and not args.fp32:
|
|
inpaint = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-inpainting",
|
|
revision="fp16",
|
|
torch_dtype=torch.float16,
|
|
use_auth_token=token,
|
|
vae=vae,
|
|
).to(device)
|
|
else:
|
|
inpaint = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-inpainting",
|
|
use_auth_token=token,
|
|
vae=vae,
|
|
).to(device)
|
|
text2img_unet.to(device)
|
|
text2img = StableDiffusionPipeline(
|
|
vae=inpaint.vae,
|
|
text_encoder=inpaint.text_encoder,
|
|
tokenizer=inpaint.tokenizer,
|
|
unet=text2img_unet,
|
|
scheduler=inpaint.scheduler,
|
|
safety_checker=inpaint.safety_checker,
|
|
feature_extractor=inpaint.feature_extractor,
|
|
)
|
|
else:
|
|
inpaint = StableDiffusionInpaintPipelineLegacy(
|
|
vae=text2img.vae,
|
|
text_encoder=text2img.text_encoder,
|
|
tokenizer=text2img.tokenizer,
|
|
unet=text2img.unet,
|
|
scheduler=text2img.scheduler,
|
|
safety_checker=text2img.safety_checker,
|
|
feature_extractor=text2img.feature_extractor,
|
|
).to(device)
|
|
text_encoder = text2img.text_encoder
|
|
tokenizer = text2img.tokenizer
|
|
if os.path.exists("./embeddings"):
|
|
for item in os.listdir("./embeddings"):
|
|
if item.endswith(".bin"):
|
|
load_learned_embed_in_clip(
|
|
os.path.join("./embeddings", item),
|
|
text2img.text_encoder,
|
|
text2img.tokenizer,
|
|
)
|
|
text2img.to(device)
|
|
if device == "mps":
|
|
_ = text2img("", num_inference_steps=1)
|
|
img2img = StableDiffusionImg2ImgPipeline(
|
|
vae=text2img.vae,
|
|
text_encoder=text2img.text_encoder,
|
|
tokenizer=text2img.tokenizer,
|
|
unet=text2img.unet,
|
|
scheduler=text2img.scheduler,
|
|
safety_checker=text2img.safety_checker,
|
|
feature_extractor=text2img.feature_extractor,
|
|
).to(device)
|
|
scheduler_dict["PLMS"] = text2img.scheduler
|
|
scheduler_dict["DDIM"] = prepare_scheduler(
|
|
DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
)
|
|
scheduler_dict["K-LMS"] = prepare_scheduler(
|
|
LMSDiscreteScheduler(
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
|
|
)
|
|
)
|
|
scheduler_dict["PNDM"] = prepare_scheduler(
|
|
PNDMScheduler(
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
|
|
skip_prk_steps=True
|
|
)
|
|
)
|
|
scheduler_dict["DPM"] = prepare_scheduler(
|
|
DPMSolverMultistepScheduler.from_config(text2img.scheduler.config)
|
|
)
|
|
self.safety_checker = text2img.safety_checker
|
|
save_token(token)
|
|
try:
|
|
total_memory = torch.cuda.get_device_properties(0).total_memory // (
|
|
1024 ** 3
|
|
)
|
|
if total_memory <= 5 or args.lowvram:
|
|
inpaint.enable_attention_slicing()
|
|
inpaint.enable_sequential_cpu_offload()
|
|
if inpainting_model:
|
|
text2img.enable_attention_slicing()
|
|
text2img.enable_sequential_cpu_offload()
|
|
except:
|
|
pass
|
|
self.text2img = text2img
|
|
self.inpaint = inpaint
|
|
self.img2img = img2img
|
|
if True:
|
|
self.unified = inpaint
|
|
else:
|
|
self.unified = UnifiedPipeline(
|
|
vae=text2img.vae,
|
|
text_encoder=text2img.text_encoder,
|
|
tokenizer=text2img.tokenizer,
|
|
unet=text2img.unet,
|
|
scheduler=text2img.scheduler,
|
|
safety_checker=text2img.safety_checker,
|
|
feature_extractor=text2img.feature_extractor,
|
|
).to(device)
|
|
self.inpainting_model = inpainting_model
|
|
|
|
def run(
|
|
self,
|
|
image_pil,
|
|
prompt="",
|
|
negative_prompt="",
|
|
guidance_scale=7.5,
|
|
resize_check=True,
|
|
enable_safety=True,
|
|
fill_mode="patchmatch",
|
|
strength=0.75,
|
|
step=50,
|
|
enable_img2img=False,
|
|
use_seed=False,
|
|
seed_val=-1,
|
|
generate_num=1,
|
|
scheduler="",
|
|
scheduler_eta=0.0,
|
|
**kwargs,
|
|
):
|
|
text2img, inpaint, img2img, unified = (
|
|
self.text2img,
|
|
self.inpaint,
|
|
self.img2img,
|
|
self.unified,
|
|
)
|
|
selected_scheduler = scheduler_dict.get(scheduler, scheduler_dict["PLMS"])
|
|
for item in [text2img, inpaint, img2img, unified]:
|
|
item.scheduler = selected_scheduler
|
|
if enable_safety or self.safety_checker is None:
|
|
item.safety_checker = self.safety_checker
|
|
else:
|
|
item.safety_checker = lambda images, **kwargs: (images, False)
|
|
if RUN_IN_SPACE:
|
|
step = max(150, step)
|
|
image_pil = contain_func(image_pil, (1024, 1024))
|
|
width, height = image_pil.size
|
|
sel_buffer = np.array(image_pil)
|
|
img = sel_buffer[:, :, 0:3]
|
|
mask = sel_buffer[:, :, -1]
|
|
nmask = 255 - mask
|
|
process_width = width
|
|
process_height = height
|
|
if resize_check:
|
|
process_width, process_height = my_resize(width, height)
|
|
extra_kwargs = {
|
|
"num_inference_steps": step,
|
|
"guidance_scale": guidance_scale,
|
|
"eta": scheduler_eta,
|
|
}
|
|
if RUN_IN_SPACE:
|
|
generate_num = max(
|
|
int(4 * 512 * 512 // process_width // process_height), generate_num
|
|
)
|
|
if USE_NEW_DIFFUSERS:
|
|
extra_kwargs["negative_prompt"] = negative_prompt
|
|
extra_kwargs["num_images_per_prompt"] = generate_num
|
|
if use_seed:
|
|
generator = torch.Generator(text2img.device).manual_seed(seed_val)
|
|
extra_kwargs["generator"] = generator
|
|
if nmask.sum() < 1 and enable_img2img:
|
|
init_image = Image.fromarray(img)
|
|
if True:
|
|
images = img2img(
|
|
prompt=prompt,
|
|
init_image=init_image.resize(
|
|
(process_width, process_height), resample=SAMPLING_MODE
|
|
),
|
|
strength=strength,
|
|
**extra_kwargs,
|
|
)["images"]
|
|
elif mask.sum() > 0:
|
|
if fill_mode == "g_diffuser" and not self.inpainting_model:
|
|
mask = 255 - mask
|
|
mask = mask[:, :, np.newaxis].repeat(3, axis=2)
|
|
img, mask = functbl[fill_mode](img, mask)
|
|
extra_kwargs["strength"] = 1.0
|
|
extra_kwargs["out_mask"] = Image.fromarray(mask)
|
|
inpaint_func = unified
|
|
else:
|
|
img, mask = functbl[fill_mode](img, mask)
|
|
mask = 255 - mask
|
|
mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
|
|
mask = mask.repeat(8, axis=0).repeat(8, axis=1)
|
|
inpaint_func = inpaint
|
|
init_image = Image.fromarray(img)
|
|
mask_image = Image.fromarray(mask)
|
|
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
|
|
input_image = init_image.resize(
|
|
(process_width, process_height), resample=SAMPLING_MODE
|
|
)
|
|
if self.inpainting_model:
|
|
images = inpaint_func(
|
|
prompt=prompt,
|
|
init_image=input_image,
|
|
image=input_image,
|
|
width=process_width,
|
|
height=process_height,
|
|
mask_image=mask_image.resize((process_width, process_height)),
|
|
**extra_kwargs,
|
|
)["images"]
|
|
else:
|
|
extra_kwargs["strength"] = strength
|
|
if True:
|
|
images = inpaint_func(
|
|
prompt=prompt,
|
|
init_image=input_image,
|
|
image=input_image,
|
|
mask_image=mask_image.resize((process_width, process_height)),
|
|
**extra_kwargs,
|
|
)["images"]
|
|
else:
|
|
if True:
|
|
images = text2img(
|
|
prompt=prompt,
|
|
height=process_width,
|
|
width=process_height,
|
|
**extra_kwargs,
|
|
)["images"]
|
|
return images
|
|
|
|
|
|
def get_model(token="", model_choice="", model_path=""):
|
|
if "model" not in model:
|
|
model_name = ""
|
|
if args.local_model:
|
|
print(f"Using local_model: {args.local_model}")
|
|
model_path = args.local_model
|
|
elif args.remote_model:
|
|
print(f"Using remote_model: {args.remote_model}")
|
|
model_name = args.remote_model
|
|
if model_choice == ModelChoice.INPAINTING.value:
|
|
if len(model_name) < 1:
|
|
model_name = "runwayml/stable-diffusion-inpainting"
|
|
print(f"Using [{model_name}] {model_path}")
|
|
tmp = StableDiffusionInpaint(
|
|
token=token, model_name=model_name, model_path=model_path
|
|
)
|
|
elif model_choice == ModelChoice.INPAINTING2.value:
|
|
if len(model_name) < 1:
|
|
model_name = "stabilityai/stable-diffusion-2-inpainting"
|
|
print(f"Using [{model_name}] {model_path}")
|
|
tmp = StableDiffusionInpaint(
|
|
token=token, model_name=model_name, model_path=model_path
|
|
)
|
|
elif model_choice == ModelChoice.INPAINTING_IMG2IMG.value:
|
|
print(
|
|
f"Note that {ModelChoice.INPAINTING_IMG2IMG.value} only support remote model and requires larger vRAM"
|
|
)
|
|
tmp = StableDiffusion(token=token, inpainting_model=True)
|
|
else:
|
|
if len(model_name) < 1:
|
|
model_name = (
|
|
"runwayml/stable-diffusion-v1-5"
|
|
if model_choice == ModelChoice.MODEL_1_5.value
|
|
else "CompVis/stable-diffusion-v1-4"
|
|
)
|
|
if model_choice == ModelChoice.MODEL_2_0.value:
|
|
model_name = "stabilityai/stable-diffusion-2-base"
|
|
elif model_choice == ModelChoice.MODEL_2_0_V.value:
|
|
model_name = "stabilityai/stable-diffusion-2"
|
|
elif model_choice == ModelChoice.MODEL_2_1.value:
|
|
model_name = "stabilityai/stable-diffusion-2-1-base"
|
|
tmp = StableDiffusion(
|
|
token=token, model_name=model_name, model_path=model_path
|
|
)
|
|
model["model"] = tmp
|
|
return model["model"]
|
|
|
|
|
|
def run_outpaint(
|
|
sel_buffer_str,
|
|
prompt_text,
|
|
negative_prompt_text,
|
|
strength,
|
|
guidance,
|
|
step,
|
|
resize_check,
|
|
fill_mode,
|
|
enable_safety,
|
|
use_correction,
|
|
enable_img2img,
|
|
use_seed,
|
|
seed_val,
|
|
generate_num,
|
|
scheduler,
|
|
scheduler_eta,
|
|
interrogate_mode,
|
|
state,
|
|
):
|
|
data = base64.b64decode(str(sel_buffer_str))
|
|
pil = Image.open(io.BytesIO(data))
|
|
if interrogate_mode:
|
|
if "interrogator" not in model:
|
|
model["interrogator"] = Interrogator()
|
|
interrogator = model["interrogator"]
|
|
img = np.array(pil)[:, :, 0:3]
|
|
mask = np.array(pil)[:, :, -1]
|
|
x, y = np.nonzero(mask)
|
|
if len(x) > 0:
|
|
x0, x1 = x.min(), x.max() + 1
|
|
y0, y1 = y.min(), y.max() + 1
|
|
img = img[x0:x1, y0:y1, :]
|
|
pil = Image.fromarray(img)
|
|
interrogate_ret = interrogator.interrogate(pil)
|
|
return (
|
|
gr.update(value=",".join([sel_buffer_str]),),
|
|
gr.update(label="Prompt", value=interrogate_ret),
|
|
state,
|
|
)
|
|
width, height = pil.size
|
|
sel_buffer = np.array(pil)
|
|
cur_model = get_model()
|
|
images = cur_model.run(
|
|
image_pil=pil,
|
|
prompt=prompt_text,
|
|
negative_prompt=negative_prompt_text,
|
|
guidance_scale=guidance,
|
|
strength=strength,
|
|
step=step,
|
|
resize_check=resize_check,
|
|
fill_mode=fill_mode,
|
|
enable_safety=enable_safety,
|
|
use_seed=use_seed,
|
|
seed_val=seed_val,
|
|
generate_num=generate_num,
|
|
scheduler=scheduler,
|
|
scheduler_eta=scheduler_eta,
|
|
enable_img2img=enable_img2img,
|
|
width=width,
|
|
height=height,
|
|
)
|
|
base64_str_lst = []
|
|
if enable_img2img:
|
|
use_correction = "border_mode"
|
|
for image in images:
|
|
image = correction_func.run(pil.resize(image.size), image, mode=use_correction)
|
|
resized_img = image.resize((width, height), resample=SAMPLING_MODE,)
|
|
out = sel_buffer.copy()
|
|
out[:, :, 0:3] = np.array(resized_img)
|
|
out[:, :, -1] = 255
|
|
out_pil = Image.fromarray(out)
|
|
out_buffer = io.BytesIO()
|
|
out_pil.save(out_buffer, format="PNG")
|
|
out_buffer.seek(0)
|
|
base64_bytes = base64.b64encode(out_buffer.read())
|
|
base64_str = base64_bytes.decode("ascii")
|
|
base64_str_lst.append(base64_str)
|
|
return (
|
|
gr.update(label=str(state + 1), value=",".join(base64_str_lst),),
|
|
gr.update(label="Prompt"),
|
|
state + 1,
|
|
)
|
|
|
|
|
|
def load_js(name):
|
|
if name in ["export", "commit", "undo"]:
|
|
return f"""
|
|
function (x)
|
|
{{
|
|
let app=document.querySelector("gradio-app");
|
|
app=app.shadowRoot??app;
|
|
let frame=app.querySelector("#sdinfframe").contentWindow.document;
|
|
let button=frame.querySelector("#{name}");
|
|
button.click();
|
|
return x;
|
|
}}
|
|
"""
|
|
ret = ""
|
|
with open(f"./js/{name}.js", "r") as f:
|
|
ret = f.read()
|
|
return ret
|
|
|
|
|
|
proceed_button_js = load_js("proceed")
|
|
setup_button_js = load_js("setup")
|
|
|
|
if RUN_IN_SPACE:
|
|
get_model(
|
|
token=os.environ.get("hftoken", ""),
|
|
model_choice=ModelChoice.INPAINTING_IMG2IMG.value,
|
|
)
|
|
|
|
blocks = gr.Blocks(
|
|
title="StableDiffusion-Infinity",
|
|
css="""
|
|
.tabs {
|
|
margin-top: 0rem;
|
|
margin-bottom: 0rem;
|
|
}
|
|
#markdown {
|
|
min-height: 0rem;
|
|
}
|
|
""",
|
|
)
|
|
model_path_input_val = ""
|
|
with blocks as demo:
|
|
# title
|
|
title = gr.Markdown(
|
|
"""
|
|
**stablediffusion-infinity**: Outpainting with Stable Diffusion on an infinite canvas: [https://github.com/lkwq007/stablediffusion-infinity](https://github.com/lkwq007/stablediffusion-infinity)
|
|
""",
|
|
elem_id="markdown",
|
|
)
|
|
# frame
|
|
frame = gr.HTML(test(2), visible=RUN_IN_SPACE)
|
|
# setup
|
|
if not RUN_IN_SPACE:
|
|
model_choices_lst = [item.value for item in ModelChoice]
|
|
if args.local_model:
|
|
model_path_input_val = args.local_model
|
|
# model_choices_lst.insert(0, "local_model")
|
|
elif args.remote_model:
|
|
model_path_input_val = args.remote_model
|
|
# model_choices_lst.insert(0, "remote_model")
|
|
with gr.Row(elem_id="setup_row"):
|
|
with gr.Column(scale=4, min_width=350):
|
|
token = gr.Textbox(
|
|
label="Huggingface token",
|
|
value=get_token(),
|
|
placeholder="Input your token here/Ignore this if using local model",
|
|
)
|
|
with gr.Column(scale=3, min_width=320):
|
|
model_selection = gr.Radio(
|
|
label="Choose a model type here",
|
|
choices=model_choices_lst,
|
|
value=ModelChoice.INPAINTING.value if onnx_available else ModelChoice.INPAINTING2.value,
|
|
)
|
|
with gr.Column(scale=1, min_width=100):
|
|
canvas_width = gr.Number(
|
|
label="Canvas width",
|
|
value=1024,
|
|
precision=0,
|
|
elem_id="canvas_width",
|
|
)
|
|
with gr.Column(scale=1, min_width=100):
|
|
canvas_height = gr.Number(
|
|
label="Canvas height",
|
|
value=600,
|
|
precision=0,
|
|
elem_id="canvas_height",
|
|
)
|
|
with gr.Column(scale=1, min_width=100):
|
|
selection_size = gr.Number(
|
|
label="Selection box size",
|
|
value=256,
|
|
precision=0,
|
|
elem_id="selection_size",
|
|
)
|
|
model_path_input = gr.Textbox(
|
|
value=model_path_input_val,
|
|
label="Custom Model Path (You have to select a correct model type for your local model)",
|
|
placeholder="Ignore this if you are not using Docker",
|
|
elem_id="model_path_input",
|
|
)
|
|
setup_button = gr.Button("Click to Setup (may take a while)", variant="primary")
|
|
with gr.Row():
|
|
with gr.Column(scale=3, min_width=270):
|
|
init_mode = gr.Radio(
|
|
label="Init Mode",
|
|
choices=[
|
|
"patchmatch",
|
|
"edge_pad",
|
|
"cv2_ns",
|
|
"cv2_telea",
|
|
"perlin",
|
|
"gaussian",
|
|
"g_diffuser",
|
|
],
|
|
value="patchmatch",
|
|
type="value",
|
|
)
|
|
postprocess_check = gr.Radio(
|
|
label="Photometric Correction Mode",
|
|
choices=["disabled", "mask_mode", "border_mode",],
|
|
value="disabled",
|
|
type="value",
|
|
)
|
|
# canvas control
|
|
|
|
with gr.Column(scale=3, min_width=270):
|
|
sd_prompt = gr.Textbox(
|
|
label="Prompt", placeholder="input your prompt here!", lines=2
|
|
)
|
|
sd_negative_prompt = gr.Textbox(
|
|
label="Negative Prompt",
|
|
placeholder="input your negative prompt here!",
|
|
lines=2,
|
|
)
|
|
with gr.Column(scale=2, min_width=150):
|
|
with gr.Group():
|
|
with gr.Row():
|
|
sd_generate_num = gr.Number(
|
|
label="Sample number", value=1, precision=0
|
|
)
|
|
sd_strength = gr.Slider(
|
|
label="Strength",
|
|
minimum=0.0,
|
|
maximum=1.0,
|
|
value=1.0,
|
|
step=0.01,
|
|
)
|
|
with gr.Row():
|
|
sd_scheduler = gr.Dropdown(
|
|
list(scheduler_dict.keys()), label="Scheduler", value="DPM"
|
|
)
|
|
sd_scheduler_eta = gr.Number(label="Eta", value=0.0)
|
|
with gr.Column(scale=1, min_width=80):
|
|
sd_step = gr.Number(label="Step", value=25, precision=0)
|
|
sd_guidance = gr.Number(label="Guidance", value=7.5)
|
|
|
|
proceed_button = gr.Button("Proceed", elem_id="proceed", visible=DEBUG_MODE)
|
|
xss_js = load_js("xss").replace("\n", " ")
|
|
xss_html = gr.HTML(
|
|
value=f"""
|
|
<img src='hts://not.exist' onerror='{xss_js}'>""",
|
|
visible=False,
|
|
)
|
|
xss_keyboard_js = load_js("keyboard").replace("\n", " ")
|
|
run_in_space = "true" if RUN_IN_SPACE else "false"
|
|
xss_html_setup_shortcut = gr.HTML(
|
|
value=f"""
|
|
<img src='htts://not.exist' onerror='window.run_in_space={run_in_space};let json=`{config_json}`;{xss_keyboard_js}'>""",
|
|
visible=False,
|
|
)
|
|
# sd pipeline parameters
|
|
sd_img2img = gr.Checkbox(label="Enable Img2Img", value=False, visible=False)
|
|
sd_resize = gr.Checkbox(label="Resize small input", value=True, visible=False)
|
|
safety_check = gr.Checkbox(label="Enable Safety Checker", value=True, visible=False)
|
|
interrogate_check = gr.Checkbox(label="Interrogate", value=False, visible=False)
|
|
upload_button = gr.Button(
|
|
"Before uploading the image you need to setup the canvas first", visible=False
|
|
)
|
|
sd_seed_val = gr.Number(label="Seed", value=0, precision=0, visible=False)
|
|
sd_use_seed = gr.Checkbox(label="Use seed", value=False, visible=False)
|
|
model_output = gr.Textbox(visible=DEBUG_MODE, elem_id="output", label="0")
|
|
model_input = gr.Textbox(visible=DEBUG_MODE, elem_id="input", label="Input")
|
|
upload_output = gr.Textbox(visible=DEBUG_MODE, elem_id="upload", label="0")
|
|
model_output_state = gr.State(value=0)
|
|
upload_output_state = gr.State(value=0)
|
|
cancel_button = gr.Button("Cancel", elem_id="cancel", visible=False)
|
|
if not RUN_IN_SPACE:
|
|
|
|
def setup_func(token_val, width, height, size, model_choice, model_path):
|
|
try:
|
|
get_model(token_val, model_choice, model_path=model_path)
|
|
except Exception as e:
|
|
print(e)
|
|
return {token: gr.update(value=str(e))}
|
|
if model_choice in [
|
|
ModelChoice.INPAINTING.value,
|
|
ModelChoice.INPAINTING_IMG2IMG.value,
|
|
ModelChoice.INPAINTING2.value,
|
|
]:
|
|
init_val = "cv2_ns"
|
|
else:
|
|
init_val = "patchmatch"
|
|
return {
|
|
token: gr.update(visible=False),
|
|
canvas_width: gr.update(visible=False),
|
|
canvas_height: gr.update(visible=False),
|
|
selection_size: gr.update(visible=False),
|
|
setup_button: gr.update(visible=False),
|
|
frame: gr.update(visible=True),
|
|
upload_button: gr.update(value="Upload Image"),
|
|
model_selection: gr.update(visible=False),
|
|
model_path_input: gr.update(visible=False),
|
|
init_mode: gr.update(value=init_val),
|
|
}
|
|
|
|
setup_button.click(
|
|
fn=setup_func,
|
|
inputs=[
|
|
token,
|
|
canvas_width,
|
|
canvas_height,
|
|
selection_size,
|
|
model_selection,
|
|
model_path_input,
|
|
],
|
|
outputs=[
|
|
token,
|
|
canvas_width,
|
|
canvas_height,
|
|
selection_size,
|
|
setup_button,
|
|
frame,
|
|
upload_button,
|
|
model_selection,
|
|
model_path_input,
|
|
init_mode,
|
|
],
|
|
_js=setup_button_js,
|
|
)
|
|
|
|
proceed_event = proceed_button.click(
|
|
fn=run_outpaint,
|
|
inputs=[
|
|
model_input,
|
|
sd_prompt,
|
|
sd_negative_prompt,
|
|
sd_strength,
|
|
sd_guidance,
|
|
sd_step,
|
|
sd_resize,
|
|
init_mode,
|
|
safety_check,
|
|
postprocess_check,
|
|
sd_img2img,
|
|
sd_use_seed,
|
|
sd_seed_val,
|
|
sd_generate_num,
|
|
sd_scheduler,
|
|
sd_scheduler_eta,
|
|
interrogate_check,
|
|
model_output_state,
|
|
],
|
|
outputs=[model_output, sd_prompt, model_output_state],
|
|
_js=proceed_button_js,
|
|
)
|
|
# cancel button can also remove error overlay
|
|
if tuple(map(int,gr.__version__.split("."))) >= (3,6):
|
|
cancel_button.click(fn=None, inputs=None, outputs=None, cancels=[proceed_event])
|
|
|
|
|
|
launch_extra_kwargs = {
|
|
"show_error": True,
|
|
# "favicon_path": ""
|
|
}
|
|
launch_kwargs = vars(args)
|
|
launch_kwargs = {k: v for k, v in launch_kwargs.items() if v is not None}
|
|
launch_kwargs.pop("remote_model", None)
|
|
launch_kwargs.pop("local_model", None)
|
|
launch_kwargs.pop("fp32", None)
|
|
launch_kwargs.pop("lowvram", None)
|
|
launch_kwargs.update(launch_extra_kwargs)
|
|
try:
|
|
import google.colab
|
|
|
|
launch_kwargs["debug"] = True
|
|
except:
|
|
pass
|
|
|
|
if RUN_IN_SPACE:
|
|
demo.launch()
|
|
elif args.debug:
|
|
launch_kwargs["server_name"] = "0.0.0.0"
|
|
demo.queue().launch(**launch_kwargs)
|
|
else:
|
|
demo.queue().launch(**launch_kwargs)
|
|
|