kenzok8-package/shadowsocksr-libev/src/server/server.c
2024-02-15 23:34:51 +08:00

2210 lines
65 KiB
C

/*
* server.c - Provide shadowsocks service
*
* Copyright (C) 2013 - 2016, Max Lv <max.c.lv@gmail.com>
*
* This file is part of the shadowsocks-libev.
*
* shadowsocks-libev is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* shadowsocks-libev is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with shadowsocks-libev; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <locale.h>
#include <signal.h>
#include <string.h>
#include <strings.h>
#include <time.h>
#include <unistd.h>
#include <getopt.h>
#include <math.h>
#ifndef __MINGW32__
#include <netdb.h>
#include <errno.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <pthread.h>
#include <sys/un.h>
#endif
#include <libcork/core.h>
#include <udns.h>
#ifdef __MINGW32__
#include "win32.h"
#endif
#if defined(HAVE_SYS_IOCTL_H) && defined(HAVE_NET_IF_H) && defined(__linux__)
#include <net/if.h>
#include <sys/ioctl.h>
#define SET_INTERFACE
#endif
#include "netutils.h"
#include "utils.h"
#include "acl.h"
#include "server.h"
#include "obfs.c" // I don't want to modify makefile
#ifndef EAGAIN
#define EAGAIN EWOULDBLOCK
#endif
#ifndef EWOULDBLOCK
#define EWOULDBLOCK EAGAIN
#endif
#ifndef BUF_SIZE
#define BUF_SIZE 2048
#endif
#ifndef SSMAXCONN
#define SSMAXCONN 1024
#endif
#ifndef UPDATE_INTERVAL
#define UPDATE_INTERVAL 30
#endif
static void signal_cb(EV_P_ ev_signal *w, int revents);
static void accept_cb(EV_P_ ev_io *w, int revents);
static void server_send_cb(EV_P_ ev_io *w, int revents);
static void server_recv_cb(EV_P_ ev_io *w, int revents);
static void remote_recv_cb(EV_P_ ev_io *w, int revents);
static void remote_send_cb(EV_P_ ev_io *w, int revents);
static void server_timeout_cb(EV_P_ ev_timer *watcher, int revents);
static void block_list_clear_cb(EV_P_ ev_timer *watcher, int revents);
static remote_t *new_remote(int fd);
static server_t *new_server(int fd, listen_ctx_t *listener);
static remote_t *connect_to_remote(EV_P_ struct addrinfo *res,
server_t *server);
static void free_remote(remote_t *remote);
static void close_and_free_remote(EV_P_ remote_t *remote);
static void free_server(server_t *server);
static void close_and_free_server(EV_P_ server_t *server);
static void server_resolve_cb(struct sockaddr *addr, void *data);
static void query_free_cb(void *data);
static size_t parse_header_len(const char atyp, const char *data, size_t offset);
static int is_header_complete(const buffer_t *buf);
int verbose = 0;
static int acl = 0;
static int mode = TCP_ONLY;
static int auth = 0;
static int ipv6first = 0;
static int protocol_compatible = 0;//SSR
static int obfs_compatible = 0;//SSR
static int fast_open = 0;
#ifdef HAVE_SETRLIMIT
static int nofile = 0;
#endif
static int remote_conn = 0;
static int server_conn = 0;
static char *bind_address = NULL;
static char *server_port = NULL;
static char *manager_address = NULL;
uint64_t tx = 0;
uint64_t rx = 0;
ev_timer stat_update_watcher;
ev_timer block_list_watcher;
static struct cork_dllist connections;
static void
stat_update_cb(EV_P_ ev_timer *watcher, int revents)
{
struct sockaddr_un svaddr, claddr;
int sfd = -1;
size_t msgLen;
char resp[BUF_SIZE];
if (verbose) {
LOGI("update traffic stat: tx: %" PRIu64 " rx: %" PRIu64 "", tx, rx);
}
snprintf(resp, BUF_SIZE, "stat: {\"%s\":%" PRIu64 "}", server_port, tx + rx);
msgLen = strlen(resp) + 1;
ss_addr_t ip_addr = { .host = NULL, .port = NULL };
parse_addr(manager_address, &ip_addr);
if (ip_addr.host == NULL || ip_addr.port == NULL) {
sfd = socket(AF_UNIX, SOCK_DGRAM, 0);
if (sfd == -1) {
ERROR("stat_socket");
return;
}
memset(&claddr, 0, sizeof(struct sockaddr_un));
claddr.sun_family = AF_UNIX;
snprintf(claddr.sun_path, sizeof(claddr.sun_path), "/tmp/shadowsocks.%s", server_port);
unlink(claddr.sun_path);
if (bind(sfd, (struct sockaddr *)&claddr, sizeof(struct sockaddr_un)) == -1) {
ERROR("stat_bind");
close(sfd);
return;
}
memset(&svaddr, 0, sizeof(struct sockaddr_un));
svaddr.sun_family = AF_UNIX;
strncpy(svaddr.sun_path, manager_address, sizeof(svaddr.sun_path) - 1);
if (sendto(sfd, resp, strlen(resp) + 1, 0, (struct sockaddr *)&svaddr,
sizeof(struct sockaddr_un)) != msgLen) {
ERROR("stat_sendto");
close(sfd);
return;
}
unlink(claddr.sun_path);
} else {
struct sockaddr_storage storage;
memset(&storage, 0, sizeof(struct sockaddr_storage));
if (get_sockaddr(ip_addr.host, ip_addr.port, &storage, 0, ipv6first) == -1) {
ERROR("failed to parse the manager addr");
return;
}
sfd = socket(storage.ss_family, SOCK_DGRAM, 0);
if (sfd == -1) {
ERROR("stat_socket");
return;
}
size_t addr_len = get_sockaddr_len((struct sockaddr *)&storage);
if (sendto(sfd, resp, strlen(resp) + 1, 0, (struct sockaddr *)&storage,
addr_len) != msgLen) {
ERROR("stat_sendto");
close(sfd);
return;
}
}
close(sfd);
}
static void
free_connections(struct ev_loop *loop)
{
struct cork_dllist_item *curr, *next;
cork_dllist_foreach_void(&connections, curr, next) {
server_t *server = cork_container_of(curr, server_t, entries);
remote_t *remote = server->remote;
close_and_free_server(loop, server);
close_and_free_remote(loop, remote);
}
}
static size_t
parse_header_len(const char atyp, const char *data, size_t offset)
{
size_t len = 0;
if ((atyp & ADDRTYPE_MASK) == 1) {
// IP V4
len += sizeof(struct in_addr);
} else if ((atyp & ADDRTYPE_MASK) == 3) {
// Domain name
uint8_t name_len = *(uint8_t *)(data + offset);
len += name_len + 1;
} else if ((atyp & ADDRTYPE_MASK) == 4) {
// IP V6
len += sizeof(struct in6_addr);
} else {
return 0;
}
len += 2;
return len;
}
static int
is_header_complete(const buffer_t *buf)
{
size_t header_len = 0;
size_t buf_len = buf->len;
char atyp = buf->array[header_len];
// 1 byte for atyp
header_len++;
if ((atyp & ADDRTYPE_MASK) == 1) {
// IP V4
header_len += sizeof(struct in_addr);
} else if ((atyp & ADDRTYPE_MASK) == 3) {
// Domain name
// domain len + len of domain
if (buf_len < header_len + 1)
return 0;
uint8_t name_len = *(uint8_t *)(buf->array + header_len);
header_len += name_len + 1;
} else if ((atyp & ADDRTYPE_MASK) == 4) {
// IP V6
header_len += sizeof(struct in6_addr);
} else {
return -1;
}
// len of port
header_len += 2;
// size of ONETIMEAUTH_BYTES
if (auth || (atyp & ONETIMEAUTH_FLAG)) {
header_len += ONETIMEAUTH_BYTES;
}
return buf_len >= header_len ? 1 : 0;
}
static char *
get_peer_name(int fd)
{
static char peer_name[INET6_ADDRSTRLEN] = { 0 };
struct sockaddr_storage addr;
socklen_t len = sizeof(struct sockaddr_storage);
memset(&addr, 0, len);
memset(peer_name, 0, INET6_ADDRSTRLEN);
int err = getpeername(fd, (struct sockaddr *)&addr, &len);
if (err == 0) {
if (addr.ss_family == AF_INET) {
struct sockaddr_in *s = (struct sockaddr_in *)&addr;
dns_ntop(AF_INET, &s->sin_addr, peer_name, INET_ADDRSTRLEN);
} else if (addr.ss_family == AF_INET6) {
struct sockaddr_in6 *s = (struct sockaddr_in6 *)&addr;
dns_ntop(AF_INET6, &s->sin6_addr, peer_name, INET6_ADDRSTRLEN);
}
} else {
return NULL;
}
return peer_name;
}
#ifdef __linux__
static void
set_linger(int fd)
{
struct linger so_linger;
memset(&so_linger, 0, sizeof(struct linger));
so_linger.l_onoff = 1;
so_linger.l_linger = 0;
setsockopt(fd, SOL_SOCKET, SO_LINGER, &so_linger, sizeof so_linger);
}
#endif
static void
reset_addr(int fd)
{
char *peer_name;
peer_name = get_peer_name(fd);
if (peer_name != NULL) {
remove_from_block_list(peer_name);
}
}
static void
report_addr(int fd, int err_level)
{
#ifdef __linux__
set_linger(fd);
#endif
char *peer_name;
peer_name = get_peer_name(fd);
if (peer_name != NULL) {
LOGE("failed to handshake with %s", peer_name);
update_block_list(peer_name, err_level);
}
}
int
setfastopen(int fd)
{
int s = 0;
#ifdef TCP_FASTOPEN
if (fast_open) {
#ifdef __APPLE__
int opt = 1;
#else
int opt = 5;
#endif
s = setsockopt(fd, IPPROTO_TCP, TCP_FASTOPEN, &opt, sizeof(opt));
if (s == -1) {
if (errno == EPROTONOSUPPORT || errno == ENOPROTOOPT) {
LOGE("fast open is not supported on this platform");
fast_open = 0;
} else {
ERROR("setsockopt");
}
}
}
#endif
return s;
}
#ifndef __MINGW32__
int
setnonblocking(int fd)
{
int flags;
if (-1 == (flags = fcntl(fd, F_GETFL, 0))) {
flags = 0;
}
return fcntl(fd, F_SETFL, flags | O_NONBLOCK);
}
#endif
int
create_and_bind(const char *host, const char *port, int mptcp)
{
struct addrinfo hints;
struct addrinfo *result, *rp, *ipv4v6bindall;
int s, listen_sock;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC; /* Return IPv4 and IPv6 choices */
hints.ai_socktype = SOCK_STREAM; /* We want a TCP socket */
hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG; /* For wildcard IP address */
hints.ai_protocol = IPPROTO_TCP;
for (int i = 1; i < 8; i++) {
s = getaddrinfo(host, port, &hints, &result);
if (s == 0) {
break;
} else {
sleep(pow(2, i));
LOGE("failed to resolve server name, wait %.0f seconds", pow(2, i));
}
}
if (s != 0) {
LOGE("getaddrinfo: %s", gai_strerror(s));
return -1;
}
rp = result;
/*
* On Linux, with net.ipv6.bindv6only = 0 (the default), getaddrinfo(NULL) with
* AI_PASSIVE returns 0.0.0.0 and :: (in this order). AI_PASSIVE was meant to
* return a list of addresses to listen on, but it is impossible to listen on
* 0.0.0.0 and :: at the same time, if :: implies dualstack mode.
*/
if (!host) {
ipv4v6bindall = result;
/* Loop over all address infos found until a IPV6 address is found. */
while (ipv4v6bindall) {
if (ipv4v6bindall->ai_family == AF_INET6) {
rp = ipv4v6bindall; /* Take first IPV6 address available */
break;
}
ipv4v6bindall = ipv4v6bindall->ai_next; /* Get next address info, if any */
}
}
for (/*rp = result*/; rp != NULL; rp = rp->ai_next) {
listen_sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if (listen_sock == -1) {
continue;
}
if (rp->ai_family == AF_INET6) {
int ipv6only = host ? 1 : 0;
setsockopt(listen_sock, IPPROTO_IPV6, IPV6_V6ONLY, &ipv6only, sizeof(ipv6only));
}
int opt = 1;
setsockopt(listen_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
#ifdef SO_NOSIGPIPE
setsockopt(listen_sock, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt));
#endif
int err = set_reuseport(listen_sock);
if (err == 0) {
LOGI("tcp port reuse enabled");
}
if (mptcp == 1) {
int err = setsockopt(listen_sock, SOL_TCP, MPTCP_ENABLED, &opt, sizeof(opt));
if (err == -1) {
ERROR("failed to enable multipath TCP");
}
}
s = bind(listen_sock, rp->ai_addr, rp->ai_addrlen);
if (s == 0) {
/* We managed to bind successfully! */
break;
} else {
ERROR("bind");
}
close(listen_sock);
}
if (rp == NULL) {
LOGE("Could not bind");
return -1;
}
freeaddrinfo(result);
return listen_sock;
}
static remote_t *
connect_to_remote(EV_P_ struct addrinfo *res,
server_t *server)
{
int sockfd;
#ifdef SET_INTERFACE
const char *iface = server->listen_ctx->iface;
#endif
if (acl) {
char ipstr[INET6_ADDRSTRLEN];
memset(ipstr, 0, INET6_ADDRSTRLEN);
if (res->ai_addr->sa_family == AF_INET) {
struct sockaddr_in *s = (struct sockaddr_in *)res->ai_addr;
dns_ntop(AF_INET, &s->sin_addr, ipstr, INET_ADDRSTRLEN);
} else if (res->ai_addr->sa_family == AF_INET6) {
struct sockaddr_in6 *s = (struct sockaddr_in6 *)res->ai_addr;
dns_ntop(AF_INET6, &s->sin6_addr, ipstr, INET6_ADDRSTRLEN);
}
if (outbound_block_match_host(ipstr) == 1) {
if (verbose)
LOGI("outbound blocked %s", ipstr);
return NULL;
}
}
// initialize remote socks
sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
if (sockfd == -1) {
ERROR("socket");
close(sockfd);
return NULL;
}
int opt = 1;
setsockopt(sockfd, SOL_TCP, TCP_NODELAY, &opt, sizeof(opt));
#ifdef SO_NOSIGPIPE
setsockopt(sockfd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt));
#endif
setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
// setup remote socks
if (setnonblocking(sockfd) == -1)
ERROR("setnonblocking");
if (bind_address != NULL)
if (bind_to_address(sockfd, bind_address) == -1) {
ERROR("bind_to_address");
close(sockfd);
return NULL;
}
#ifdef SET_INTERFACE
if (iface) {
if (setinterface(sockfd, iface) == -1) {
ERROR("setinterface");
close(sockfd);
return NULL;
}
}
#endif
remote_t *remote = new_remote(sockfd);
#ifdef TCP_FASTOPEN
if (fast_open) {
#ifdef __APPLE__
((struct sockaddr_in *)(res->ai_addr))->sin_len = sizeof(struct sockaddr_in);
sa_endpoints_t endpoints;
memset((char *)&endpoints, 0, sizeof(endpoints));
endpoints.sae_dstaddr = res->ai_addr;
endpoints.sae_dstaddrlen = res->ai_addrlen;
struct iovec iov;
iov.iov_base = server->buf->array + server->buf->idx;
iov.iov_len = server->buf->len;
size_t len;
int s = connectx(sockfd, &endpoints, SAE_ASSOCID_ANY, CONNECT_DATA_IDEMPOTENT,
&iov, 1, &len, NULL);
if (s == 0) {
s = len;
}
#else
ssize_t s = sendto(sockfd, server->buf->array + server->buf->idx,
server->buf->len, MSG_FASTOPEN, res->ai_addr,
res->ai_addrlen);
#endif
if (s == -1) {
if (errno == CONNECT_IN_PROGRESS || errno == EAGAIN
|| errno == EWOULDBLOCK) {
// The remote server doesn't support tfo or it's the first connection to the server.
// It will automatically fall back to conventional TCP.
} else if (errno == EOPNOTSUPP || errno == EPROTONOSUPPORT ||
errno == ENOPROTOOPT) {
// Disable fast open as it's not supported
fast_open = 0;
LOGE("fast open is not supported on this platform");
} else {
ERROR("sendto");
}
} else if (s <= server->buf->len) {
server->buf->idx += s;
server->buf->len -= s;
} else {
server->buf->idx = 0;
server->buf->len = 0;
}
}
#endif
if (!fast_open) {
int r = connect(sockfd, res->ai_addr, res->ai_addrlen);
if (r == -1 && errno != CONNECT_IN_PROGRESS) {
ERROR("connect");
close_and_free_remote(EV_A_ remote);
return NULL;
}
}
return remote;
}
static void
server_recv_cb(EV_P_ ev_io *w, int revents)
{
server_ctx_t *server_recv_ctx = (server_ctx_t *)w;
server_t *server = server_recv_ctx->server;
remote_t *remote = NULL;
int len = server->buf->len;
buffer_t *buf = server->buf;
if (server->stage > STAGE_PARSE) {
remote = server->remote;
buf = remote->buf;
len = 0;
ev_timer_again(EV_A_ & server->recv_ctx->watcher);
}
if (len > BUF_SIZE) {
ERROR("out of recv buffer");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
ssize_t r = recv(server->fd, buf->array + len, BUF_SIZE - len, 0);
if (r == 0) {
// connection closed
if (verbose) {
LOGI("server_recv close the connection");
}
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
} else if (r == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// no data
// continue to wait for recv
return;
} else {
ERROR("server recv");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
tx += r;
if (server->stage == STAGE_ERROR) {
server->buf->len = 0;
server->buf->idx = 0;
return;
}
// handle incomplete header part 1
if (server->stage == STAGE_INIT) {
buf->len += r;
if (buf->len <= enc_get_iv_len() + 1) {
// wait for more
return;
}
} else {
buf->len = r;
}
// SSR beg
if (server->obfs_plugin) {
obfs_class *obfs_plugin = server->obfs_plugin;
if (obfs_plugin->server_decode) {
int needsendback = 0;
if(obfs_compatible == 1)
{
char *back_buf = (char*)malloc(sizeof(buffer_t));
memcpy(back_buf, buf, sizeof(buffer_t));
buf->len = obfs_plugin->server_decode(server->obfs, &buf->array, buf->len, &buf->capacity, &needsendback);
if ((int)buf->len < 0)
{
LOGE("obfs_compatible");
memcpy(buf, back_buf, sizeof(buffer_t));
free(back_buf);
server->obfs_compatible_state = 1;
}
}
else
{
buf->len = obfs_plugin->server_decode(server->obfs, &buf->array, buf->len, &buf->capacity, &needsendback);
if ((int)buf->len < 0) {
LOGE("server_decode");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
if (needsendback) {
size_t capacity = BUF_SIZE;
char *sendback_buf = (char*)malloc(capacity);
obfs_class *obfs_plugin = server->obfs_plugin;
if (obfs_plugin->server_encode) {
int len = obfs_plugin->server_encode(server->obfs, &sendback_buf, 0, &capacity);
send(server->fd, sendback_buf, len, 0);
}
free(sendback_buf);
return;
}
}
}
int err = ss_decrypt(buf, server->d_ctx, BUF_SIZE);
if (err) {
report_addr(server->fd, MALICIOUS);
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
if (server->protocol_plugin) {
obfs_class *protocol_plugin = server->protocol_plugin;
if (protocol_plugin->server_post_decrypt) {
if(protocol_compatible == 1)
{
char *back_buf = (char*)malloc(sizeof(buffer_t));
memcpy(back_buf, buf, sizeof(buffer_t));
buf->len = protocol_plugin->server_post_decrypt(server->protocol, &buf->array, buf->len, &buf->capacity);
if ((int)buf->len < 0) {
LOGE("protocol_compatible");
memcpy(buf, back_buf, sizeof(buffer_t));
free(back_buf);
server->protocol_compatible_state = 1;
}
if ( buf->len == 0 )
{
LOGE("protocol_compatible");
memcpy(buf, back_buf, sizeof(buffer_t));
free(back_buf);
server->protocol_compatible_state = 1;
}
}
else
{
buf->len = protocol_plugin->server_post_decrypt(server->protocol, &buf->array, buf->len, &buf->capacity);
if ((int)buf->len < 0) {
LOGE("server_post_decrypt");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
if ( buf->len == 0 )
{
LOGE("server_post_decrypt");
return;
}
}
}
}
// SSR end
// handle incomplete header part 2
if (server->stage == STAGE_INIT) {
int ret = is_header_complete(server->buf);
if (ret == 1) {
bfree(server->header_buf);
ss_free(server->header_buf);
server->stage = STAGE_PARSE;
} else if (ret == -1) {
server->stage = STAGE_ERROR;
report_addr(server->fd, MALFORMED);
server->buf->len = 0;
server->buf->idx = 0;
return;
} else {
server->stage = STAGE_HANDSHAKE;
}
}
if (server->stage == STAGE_HANDSHAKE) {
size_t header_len = server->header_buf->len;
brealloc(server->header_buf, server->buf->len + header_len, BUF_SIZE);
memcpy(server->header_buf->array + header_len,
server->buf->array, server->buf->len);
server->header_buf->len = server->buf->len + header_len;
int ret = is_header_complete(server->buf);
if (ret == 1) {
brealloc(server->buf, server->header_buf->len, BUF_SIZE);
memcpy(server->buf->array, server->header_buf->array, server->header_buf->len);
server->buf->len = server->header_buf->len;
bfree(server->header_buf);
ss_free(server->header_buf);
server->stage = STAGE_PARSE;
} else {
if (ret == -1)
server->stage = STAGE_ERROR;
server->buf->len = 0;
server->buf->idx = 0;
return;
}
}
// handshake and transmit data
if (server->stage == STAGE_STREAM) {
if (server->auth && !ss_check_hash(remote->buf, server->chunk, server->d_ctx, BUF_SIZE)) {
LOGE("hash error");
report_addr(server->fd, BAD);
close_and_free_server(EV_A_ server);
close_and_free_remote(EV_A_ remote);
return;
}
int s = send(remote->fd, remote->buf->array, remote->buf->len, 0);
if (s == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// no data, wait for send
remote->buf->idx = 0;
ev_io_stop(EV_A_ & server_recv_ctx->io);
ev_io_start(EV_A_ & remote->send_ctx->io);
} else {
ERROR("server_recv_send");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
} else if (s < remote->buf->len) {
remote->buf->len -= s;
remote->buf->idx = s;
ev_io_stop(EV_A_ & server_recv_ctx->io);
ev_io_start(EV_A_ & remote->send_ctx->io);
}
return;
} else if (server->stage == STAGE_PARSE) {
/*
* Shadowsocks TCP Relay Header:
*
* +------+----------+----------+----------------+
* | ATYP | DST.ADDR | DST.PORT | HMAC-SHA1 |
* +------+----------+----------+----------------+
* | 1 | Variable | 2 | 10 |
* +------+----------+----------+----------------+
*
* If ATYP & ONETIMEAUTH_FLAG(0x10) != 0, Authentication (HMAC-SHA1) is enabled.
*
* The key of HMAC-SHA1 is (IV + KEY) and the input is the whole header.
* The output of HMAC-SHA is truncated to 10 bytes (leftmost bits).
*/
/*
* Shadowsocks Request's Chunk Authentication for TCP Relay's payload
* (No chunk authentication for response's payload):
*
* +------+-----------+-------------+------+
* | LEN | HMAC-SHA1 | DATA | ...
* +------+-----------+-------------+------+
* | 2 | 10 | Variable | ...
* +------+-----------+-------------+------+
*
* The key of HMAC-SHA1 is (IV + CHUNK ID)
* The output of HMAC-SHA is truncated to 10 bytes (leftmost bits).
*/
int offset = 0;
int need_query = 0;
char atyp = server->buf->array[offset++];
char host[257] = { 0 };
uint16_t port = 0;
struct addrinfo info;
struct sockaddr_storage storage;
memset(&info, 0, sizeof(struct addrinfo));
memset(&storage, 0, sizeof(struct sockaddr_storage));
if (auth || (atyp & ONETIMEAUTH_FLAG)) {
size_t header_len = parse_header_len(atyp, server->buf->array, offset);
size_t len = server->buf->len;
if (header_len == 0 || len < offset + header_len + ONETIMEAUTH_BYTES) {
report_addr(server->fd, MALFORMED);
close_and_free_server(EV_A_ server);
return;
}
server->buf->len = offset + header_len + ONETIMEAUTH_BYTES;
if (ss_onetimeauth_verify(server->buf, server->d_ctx->evp.iv)) {
report_addr(server->fd, BAD);
close_and_free_server(EV_A_ server);
return;
}
server->buf->len = len;
server->auth = 1;
}
// get remote addr and port
if ((atyp & ADDRTYPE_MASK) == 1) {
// IP V4
struct sockaddr_in *addr = (struct sockaddr_in *)&storage;
size_t in_addr_len = sizeof(struct in_addr);
addr->sin_family = AF_INET;
if (server->buf->len >= in_addr_len + 3) {
addr->sin_addr = *(struct in_addr *)(server->buf->array + offset);
dns_ntop(AF_INET, (const void *)(server->buf->array + offset),
host, INET_ADDRSTRLEN);
offset += in_addr_len;
} else {
LOGE("invalid header with addr type %d", atyp);
report_addr(server->fd, MALFORMED);
close_and_free_server(EV_A_ server);
return;
}
addr->sin_port = *(uint16_t *)(server->buf->array + offset);
info.ai_family = AF_INET;
info.ai_socktype = SOCK_STREAM;
info.ai_protocol = IPPROTO_TCP;
info.ai_addrlen = sizeof(struct sockaddr_in);
info.ai_addr = (struct sockaddr *)addr;
} else if ((atyp & ADDRTYPE_MASK) == 3) {
// Domain name
uint8_t name_len = *(uint8_t *)(server->buf->array + offset);
if (name_len + 4 <= server->buf->len) {
memcpy(host, server->buf->array + offset + 1, name_len);
offset += name_len + 1;
} else {
LOGE("invalid name length: %d", name_len);
report_addr(server->fd, MALFORMED);
close_and_free_server(EV_A_ server);
return;
}
if (acl && outbound_block_match_host(host) == 1) {
if (verbose)
LOGI("outbound blocked %s", host);
close_and_free_server(EV_A_ server);
return;
}
struct cork_ip ip;
if (cork_ip_init(&ip, host) != -1) {
info.ai_socktype = SOCK_STREAM;
info.ai_protocol = IPPROTO_TCP;
if (ip.version == 4) {
struct sockaddr_in *addr = (struct sockaddr_in *)&storage;
dns_pton(AF_INET, host, &(addr->sin_addr));
addr->sin_port = *(uint16_t *)(server->buf->array + offset);
addr->sin_family = AF_INET;
info.ai_family = AF_INET;
info.ai_addrlen = sizeof(struct sockaddr_in);
info.ai_addr = (struct sockaddr *)addr;
} else if (ip.version == 6) {
struct sockaddr_in6 *addr = (struct sockaddr_in6 *)&storage;
dns_pton(AF_INET6, host, &(addr->sin6_addr));
addr->sin6_port = *(uint16_t *)(server->buf->array + offset);
addr->sin6_family = AF_INET6;
info.ai_family = AF_INET6;
info.ai_addrlen = sizeof(struct sockaddr_in6);
info.ai_addr = (struct sockaddr *)addr;
}
} else {
if (!validate_hostname(host, name_len)) {
LOGE("invalid host name");
report_addr(server->fd, MALFORMED);
close_and_free_server(EV_A_ server);
return;
}
need_query = 1;
}
} else if ((atyp & ADDRTYPE_MASK) == 4) {
// IP V6
struct sockaddr_in6 *addr = (struct sockaddr_in6 *)&storage;
size_t in6_addr_len = sizeof(struct in6_addr);
addr->sin6_family = AF_INET6;
if (server->buf->len >= in6_addr_len + 3) {
addr->sin6_addr = *(struct in6_addr *)(server->buf->array + offset);
dns_ntop(AF_INET6, (const void *)(server->buf->array + offset),
host, INET6_ADDRSTRLEN);
offset += in6_addr_len;
} else {
LOGE("invalid header with addr type %d", atyp);
report_addr(server->fd, MALFORMED);
close_and_free_server(EV_A_ server);
return;
}
addr->sin6_port = *(uint16_t *)(server->buf->array + offset);
info.ai_family = AF_INET6;
info.ai_socktype = SOCK_STREAM;
info.ai_protocol = IPPROTO_TCP;
info.ai_addrlen = sizeof(struct sockaddr_in6);
info.ai_addr = (struct sockaddr *)addr;
}
if (offset == 1) {
LOGE("invalid header with addr type %d", atyp);
report_addr(server->fd, MALFORMED);
close_and_free_server(EV_A_ server);
return;
}
port = (*(uint16_t *)(server->buf->array + offset));
offset += 2;
if (server->auth) {
offset += ONETIMEAUTH_BYTES;
}
if (server->buf->len < offset) {
report_addr(server->fd, MALFORMED);
close_and_free_server(EV_A_ server);
return;
} else {
server->buf->len -= offset;
memmove(server->buf->array, server->buf->array + offset, server->buf->len);
}
if (verbose) {
if ((atyp & ADDRTYPE_MASK) == 4)
LOGI("connect to [%s]:%d", host, ntohs(port));
else
LOGI("connect to %s:%d", host, ntohs(port));
}
if (server->auth && !ss_check_hash(server->buf, server->chunk, server->d_ctx, BUF_SIZE)) {
LOGE("hash error");
report_addr(server->fd, BAD);
close_and_free_server(EV_A_ server);
return;
}
if (!need_query) {
remote_t *remote = connect_to_remote(EV_A_ &info, server);
if (remote == NULL) {
LOGE("connect error");
close_and_free_server(EV_A_ server);
return;
} else {
server->remote = remote;
remote->server = server;
// XXX: should handle buffer carefully
if (server->buf->len > 0) {
memcpy(remote->buf->array, server->buf->array, server->buf->len);
remote->buf->len = server->buf->len;
remote->buf->idx = 0;
server->buf->len = 0;
server->buf->idx = 0;
}
// waiting on remote connected event
ev_io_stop(EV_A_ & server_recv_ctx->io);
ev_io_start(EV_A_ & remote->send_ctx->io);
}
} else {
query_t *query = (query_t *)ss_malloc(sizeof(query_t));
query->server = server;
snprintf(query->hostname, 256, "%s", host);
server->stage = STAGE_RESOLVE;
server->query = resolv_query(host, server_resolve_cb,
query_free_cb, query, port);
ev_io_stop(EV_A_ & server_recv_ctx->io);
}
return;
}
// should not reach here
FATAL("server context error");
}
static void
server_send_cb(EV_P_ ev_io *w, int revents)
{
server_ctx_t *server_send_ctx = (server_ctx_t *)w;
server_t *server = server_send_ctx->server;
remote_t *remote = server->remote;
if (remote == NULL) {
LOGE("invalid server");
close_and_free_server(EV_A_ server);
return;
}
if (server->buf->len == 0) {
// close and free
if (verbose) {
LOGI("server_send close the connection");
}
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
} else {
// has data to send
ssize_t s = send(server->fd, server->buf->array + server->buf->idx,
server->buf->len, 0);
if (s == -1) {
if (errno != EAGAIN && errno != EWOULDBLOCK) {
ERROR("server_send_send");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
return;
} else if (s < server->buf->len) {
// partly sent, move memory, wait for the next time to send
server->buf->len -= s;
server->buf->idx += s;
return;
} else {
// all sent out, wait for reading
server->buf->len = 0;
server->buf->idx = 0;
ev_io_stop(EV_A_ & server_send_ctx->io);
if (remote != NULL) {
ev_io_start(EV_A_ & remote->recv_ctx->io);
return;
} else {
LOGE("invalid remote");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
}
}
static void
block_list_clear_cb(EV_P_ ev_timer *watcher, int revents)
{
clear_block_list();
}
static void
server_timeout_cb(EV_P_ ev_timer *watcher, int revents)
{
server_ctx_t *server_ctx
= cork_container_of(watcher, server_ctx_t, watcher);
server_t *server = server_ctx->server;
remote_t *remote = server->remote;
if (verbose) {
LOGI("TCP connection timeout");
}
if (server->stage < STAGE_PARSE) {
if (verbose) {
size_t len = server->stage ?
server->header_buf->len : server->buf->len;
#ifdef __MINGW32__
LOGI("incomplete header: %u", len);
#else
LOGI("incomplete header: %zu", len);
#endif
}
report_addr(server->fd, SUSPICIOUS);
}
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
static void
query_free_cb(void *data)
{
if (data != NULL) {
ss_free(data);
}
}
static void
server_resolve_cb(struct sockaddr *addr, void *data)
{
query_t *query = (query_t *)data;
server_t *server = query->server;
struct ev_loop *loop = server->listen_ctx->loop;
server->query = NULL;
if (addr == NULL) {
LOGE("unable to resolve %s", query->hostname);
close_and_free_server(EV_A_ server);
} else {
if (verbose) {
LOGI("successfully resolved %s", query->hostname);
}
struct addrinfo info;
memset(&info, 0, sizeof(struct addrinfo));
info.ai_socktype = SOCK_STREAM;
info.ai_protocol = IPPROTO_TCP;
info.ai_addr = addr;
if (addr->sa_family == AF_INET) {
info.ai_family = AF_INET;
info.ai_addrlen = sizeof(struct sockaddr_in);
} else if (addr->sa_family == AF_INET6) {
info.ai_family = AF_INET6;
info.ai_addrlen = sizeof(struct sockaddr_in6);
}
remote_t *remote = connect_to_remote(EV_A_ &info, server);
if (remote == NULL) {
close_and_free_server(EV_A_ server);
} else {
server->remote = remote;
remote->server = server;
// XXX: should handle buffer carefully
if (server->buf->len > 0) {
memcpy(remote->buf->array, server->buf->array + server->buf->idx,
server->buf->len);
remote->buf->len = server->buf->len;
remote->buf->idx = 0;
server->buf->len = 0;
server->buf->idx = 0;
}
// listen to remote connected event
ev_io_start(EV_A_ & remote->send_ctx->io);
}
}
}
static void
remote_recv_cb(EV_P_ ev_io *w, int revents)
{
remote_ctx_t *remote_recv_ctx = (remote_ctx_t *)w;
remote_t *remote = remote_recv_ctx->remote;
server_t *server = remote->server;
if (server == NULL) {
LOGE("invalid server");
close_and_free_remote(EV_A_ remote);
return;
}
ev_timer_again(EV_A_ & server->recv_ctx->watcher);
ssize_t r = recv(remote->fd, server->buf->array, BUF_SIZE, 0);
if (r == 0) {
// connection closed
if (verbose) {
LOGI("remote_recv close the connection");
}
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
} else if (r == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// no data
// continue to wait for recv
return;
} else {
ERROR("remote recv");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
rx += r;
server->buf->len = r;
// SSR beg
server_info _server_info;
if (server->obfs_plugin) {
server->obfs_plugin->get_server_info(server->obfs, &_server_info);
_server_info.head_len = get_head_size(server->buf->array, server->buf->len, 30);
server->obfs_plugin->set_server_info(server->obfs, &_server_info);
}
if (server->protocol_plugin && server->obfs_compatible_state == 0) {
obfs_class *protocol_plugin = server->protocol_plugin;
if (protocol_plugin->server_pre_encrypt) {
server->buf->len = protocol_plugin->server_pre_encrypt(server->protocol, &server->buf->array, server->buf->len, &server->buf->capacity);
}
}
int err = ss_encrypt(server->buf, server->e_ctx, BUF_SIZE);
if (err) {
LOGE("invalid password or cipher");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
if (server->obfs_plugin && server->obfs_compatible_state == 0) {
obfs_class *obfs_plugin = server->obfs_plugin;
if (obfs_plugin->server_encode) {
server->buf->len = obfs_plugin->server_encode(server->obfs, &server->buf->array, server->buf->len, &server->buf->capacity);
}
}
// SSR end
int s = send(server->fd, server->buf->array, server->buf->len, 0);
if (s == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// no data, wait for send
server->buf->idx = 0;
ev_io_stop(EV_A_ & remote_recv_ctx->io);
ev_io_start(EV_A_ & server->send_ctx->io);
} else {
ERROR("remote_recv_send");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
} else if (s < server->buf->len) {
server->buf->len -= s;
server->buf->idx = s;
ev_io_stop(EV_A_ & remote_recv_ctx->io);
ev_io_start(EV_A_ & server->send_ctx->io);
}
// Disable TCP_NODELAY after the first response are sent
if (!remote->recv_ctx->connected) {
int opt = 0;
setsockopt(server->fd, SOL_TCP, TCP_NODELAY, &opt, sizeof(opt));
setsockopt(remote->fd, SOL_TCP, TCP_NODELAY, &opt, sizeof(opt));
remote->recv_ctx->connected = 1;
}
}
static void
remote_send_cb(EV_P_ ev_io *w, int revents)
{
remote_ctx_t *remote_send_ctx = (remote_ctx_t *)w;
remote_t *remote = remote_send_ctx->remote;
server_t *server = remote->server;
if (server == NULL) {
LOGE("invalid server");
close_and_free_remote(EV_A_ remote);
return;
}
if (!remote_send_ctx->connected) {
struct sockaddr_storage addr;
socklen_t len = sizeof(struct sockaddr_storage);
memset(&addr, 0, len);
int r = getpeername(remote->fd, (struct sockaddr *)&addr, &len);
if (r == 0) {
if (verbose) {
LOGI("remote connected");
}
remote_send_ctx->connected = 1;
// Clear the state of this address in the block list
reset_addr(server->fd);
if (remote->buf->len == 0) {
server->stage = STAGE_STREAM;
ev_io_stop(EV_A_ & remote_send_ctx->io);
ev_io_start(EV_A_ & server->recv_ctx->io);
ev_io_start(EV_A_ & remote->recv_ctx->io);
return;
}
} else {
ERROR("getpeername");
// not connected
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
if (remote->buf->len == 0) {
// close and free
if (verbose) {
LOGI("remote_send close the connection");
}
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
} else {
// has data to send
ssize_t s = send(remote->fd, remote->buf->array + remote->buf->idx,
remote->buf->len, 0);
if (s == -1) {
if (errno != EAGAIN && errno != EWOULDBLOCK) {
ERROR("remote_send_send");
// close and free
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
return;
} else if (s < remote->buf->len) {
// partly sent, move memory, wait for the next time to send
remote->buf->len -= s;
remote->buf->idx += s;
return;
} else {
// all sent out, wait for reading
remote->buf->len = 0;
remote->buf->idx = 0;
ev_io_stop(EV_A_ & remote_send_ctx->io);
if (server != NULL) {
ev_io_start(EV_A_ & server->recv_ctx->io);
if (server->stage != STAGE_STREAM) {
server->stage = STAGE_STREAM;
ev_io_start(EV_A_ & remote->recv_ctx->io);
}
} else {
LOGE("invalid server");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
return;
}
}
}
static remote_t *
new_remote(int fd)
{
if (verbose) {
remote_conn++;
}
remote_t *remote;
remote = ss_malloc(sizeof(remote_t));
remote->recv_ctx = ss_malloc(sizeof(remote_ctx_t));
remote->send_ctx = ss_malloc(sizeof(remote_ctx_t));
remote->buf = ss_malloc(sizeof(buffer_t));
remote->fd = fd;
remote->recv_ctx->remote = remote;
remote->recv_ctx->connected = 0;
remote->send_ctx->remote = remote;
remote->send_ctx->connected = 0;
remote->server = NULL;
ev_io_init(&remote->recv_ctx->io, remote_recv_cb, fd, EV_READ);
ev_io_init(&remote->send_ctx->io, remote_send_cb, fd, EV_WRITE);
balloc(remote->buf, BUF_SIZE);
return remote;
}
static void
free_remote(remote_t *remote)
{
if (remote->server != NULL) {
remote->server->remote = NULL;
}
if (remote->buf != NULL) {
bfree(remote->buf);
ss_free(remote->buf);
}
ss_free(remote->recv_ctx);
ss_free(remote->send_ctx);
ss_free(remote);
}
static void
close_and_free_remote(EV_P_ remote_t *remote)
{
if (remote != NULL) {
ev_io_stop(EV_A_ & remote->send_ctx->io);
ev_io_stop(EV_A_ & remote->recv_ctx->io);
close(remote->fd);
free_remote(remote);
if (verbose) {
remote_conn--;
LOGI("current remote connection: %d", remote_conn);
}
}
}
static server_t *
new_server(int fd, listen_ctx_t *listener)
{
if (verbose) {
server_conn++;
}
server_t *server;
server = ss_malloc(sizeof(server_t));
memset(server, 0, sizeof(server_t));
server->recv_ctx = ss_malloc(sizeof(server_ctx_t));
server->send_ctx = ss_malloc(sizeof(server_ctx_t));
server->buf = ss_malloc(sizeof(buffer_t));
server->header_buf = ss_malloc(sizeof(buffer_t));
server->fd = fd;
server->recv_ctx->server = server;
server->recv_ctx->connected = 0;
server->send_ctx->server = server;
server->send_ctx->connected = 0;
server->stage = STAGE_INIT;
server->query = NULL;
server->listen_ctx = listener;
server->remote = NULL;
if (listener->method) {
server->e_ctx = ss_malloc(sizeof(enc_ctx_t));
server->d_ctx = ss_malloc(sizeof(enc_ctx_t));
enc_ctx_init(listener->method, server->e_ctx, 1);
enc_ctx_init(listener->method, server->d_ctx, 0);
} else {
server->e_ctx = NULL;
server->d_ctx = NULL;
}
int request_timeout = min(MAX_REQUEST_TIMEOUT, listener->timeout)
+ rand() % MAX_REQUEST_TIMEOUT;
ev_io_init(&server->recv_ctx->io, server_recv_cb, fd, EV_READ);
ev_io_init(&server->send_ctx->io, server_send_cb, fd, EV_WRITE);
ev_timer_init(&server->recv_ctx->watcher, server_timeout_cb,
request_timeout, listener->timeout);
balloc(server->buf, BUF_SIZE);
balloc(server->header_buf, BUF_SIZE);
server->chunk = (chunk_t *)malloc(sizeof(chunk_t));
memset(server->chunk, 0, sizeof(chunk_t));
server->chunk->buf = ss_malloc(sizeof(buffer_t));
memset(server->chunk->buf, 0, sizeof(buffer_t));
cork_dllist_add(&connections, &server->entries);
return server;
}
static void
free_server(server_t *server)
{
cork_dllist_remove(&server->entries);
if (server->chunk != NULL) {
if (server->chunk->buf != NULL) {
bfree(server->chunk->buf);
ss_free(server->chunk->buf);
}
ss_free(server->chunk);
}
if (server->remote != NULL) {
server->remote->server = NULL;
}
if (server->e_ctx != NULL) {
cipher_context_release(&server->e_ctx->evp);
ss_free(server->e_ctx);
}
if (server->d_ctx != NULL) {
cipher_context_release(&server->d_ctx->evp);
ss_free(server->d_ctx);
}
if (server->buf != NULL) {
bfree(server->buf);
ss_free(server->buf);
}
if (server->header_buf != NULL) {
bfree(server->header_buf);
ss_free(server->header_buf);
}
ss_free(server->recv_ctx);
ss_free(server->send_ctx);
ss_free(server);
}
static void
close_and_free_server(EV_P_ server_t *server)
{
if (server != NULL) {
if (server->query != NULL) {
resolv_cancel(server->query);
server->query = NULL;
}
ev_io_stop(EV_A_ & server->send_ctx->io);
ev_io_stop(EV_A_ & server->recv_ctx->io);
ev_timer_stop(EV_A_ & server->recv_ctx->watcher);
close(server->fd);
free_server(server);
if (verbose) {
server_conn--;
LOGI("current server connection: %d", server_conn);
}
}
}
static void
signal_cb(EV_P_ ev_signal *w, int revents)
{
if (revents & EV_SIGNAL) {
switch (w->signum) {
case SIGINT:
case SIGTERM:
ev_unloop(EV_A_ EVUNLOOP_ALL);
}
}
}
static void
accept_cb(EV_P_ ev_io *w, int revents)
{
listen_ctx_t *listener = (listen_ctx_t *)w;
int serverfd = accept(listener->fd, NULL, NULL);
if (serverfd == -1) {
ERROR("accept");
return;
}
char *peer_name = get_peer_name(serverfd);
if (peer_name != NULL) {
int in_white_list = 0;
if (acl) {
if ((get_acl_mode() == BLACK_LIST && acl_match_host(peer_name) == 1)
|| (get_acl_mode() == WHITE_LIST && acl_match_host(peer_name) >= 0)) {
LOGE("Access denied from %s", peer_name);
close(serverfd);
return;
} else if (acl_match_host(peer_name) == -1) {
in_white_list = 1;
}
}
if (!in_white_list && check_block_list(peer_name)) {
LOGE("block all requests from %s", peer_name);
#ifdef __linux__
set_linger(serverfd);
#endif
close(serverfd);
return;
}
}
int opt = 1;
setsockopt(serverfd, SOL_TCP, TCP_NODELAY, &opt, sizeof(opt));
#ifdef SO_NOSIGPIPE
setsockopt(serverfd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt));
#endif
setnonblocking(serverfd);
if (verbose) {
LOGI("accept a connection");
}
server_t *server = new_server(serverfd, listener);
// SSR beg
server->obfs_plugin = new_obfs_class(server->listen_ctx->obfs_name);
if (server->obfs_plugin) {
server->obfs = server->obfs_plugin->new_obfs();
server->obfs_compatible_state = 0;
}
server->protocol_plugin = new_obfs_class(server->listen_ctx->protocol_name);
if (server->protocol_plugin) {
server->protocol = server->protocol_plugin->new_obfs();
server->protocol_compatible_state = 0;
}
server_info _server_info;
memset(&_server_info, 0, sizeof(server_info));
_server_info.param = server->listen_ctx->obfs_param;
if(server->obfs_plugin)
_server_info.g_data = server->obfs_plugin->init_data();
_server_info.head_len = 7;
_server_info.iv = server->e_ctx->evp.iv;
_server_info.iv_len = enc_get_iv_len();
_server_info.key = enc_get_key();
_server_info.key_len = enc_get_key_len();
_server_info.tcp_mss = 1460;
if (server->obfs_plugin)
server->obfs_plugin->set_server_info(server->obfs, &_server_info);
_server_info.param = server->listen_ctx->protocol_param;
if (server->protocol_plugin)
_server_info.g_data = server->protocol_plugin->init_data();
if (server->protocol_plugin)
server->protocol_plugin->set_server_info(server->protocol, &_server_info);
// SSR end
ev_io_start(EV_A_ & server->recv_ctx->io);
ev_timer_start(EV_A_ & server->recv_ctx->watcher);
}
int
main(int argc, char **argv)
{
int i, c;
int pid_flags = 0;
int mptcp = 0;
int firewall = 0;
int mtu = 0;
char *user = NULL;
char *password = NULL;
char *timeout = NULL;
char *protocol = NULL; // SSR
char *protocol_param = NULL; // SSR
char *method = NULL;
char *obfs = NULL; // SSR
char *obfs_param = NULL; // SSR
char *pid_path = NULL;
char *conf_path = NULL;
char *iface = NULL;
int server_num = 0;
const char *server_host[MAX_REMOTE_NUM];
char *nameservers[MAX_DNS_NUM + 1];
int nameserver_num = 0;
int option_index = 0;
static struct option long_options[] = {
{ "fast-open", no_argument, 0, 0 },
{ "acl", required_argument, 0, 0 },
{ "manager-address", required_argument, 0, 0 },
{ "mtu", required_argument, 0, 0 },
{ "help", no_argument, 0, 0 },
#ifdef __linux__
{ "mptcp", no_argument, 0, 0 },
{ "firewall", no_argument, 0, 0 },
#endif
{ 0, 0, 0, 0 }
};
opterr = 0;
USE_TTY();
while ((c = getopt_long(argc, argv, "f:s:p:l:k:t:m:b:c:i:d:a:n:O:o:G:g:huUvA6",
long_options, &option_index)) != -1) {
switch (c) {
case 0:
if (option_index == 0) {
fast_open = 1;
} else if (option_index == 1) {
LOGI("initializing acl...");
acl = !init_acl(optarg);
} else if (option_index == 2) {
manager_address = optarg;
} else if (option_index == 3) {
mtu = atoi(optarg);
LOGI("set MTU to %d", mtu);
} else if (option_index == 4) {
usage();
exit(EXIT_SUCCESS);
} else if (option_index == 5) {
mptcp = 1;
LOGI("enable multipath TCP");
} else if (option_index == 6) {
firewall = 1;
LOGI("enable firewall rules");
}
break;
case 's':
if (server_num < MAX_REMOTE_NUM) {
server_host[server_num++] = optarg;
}
break;
case 'b':
bind_address = optarg;
break;
case 'p':
server_port = optarg;
break;
case 'k':
password = optarg;
break;
case 'f':
pid_flags = 1;
pid_path = optarg;
break;
case 't':
timeout = optarg;
break;
// SSR beg
case 'O':
protocol = optarg;
break;
case 'm':
method = optarg;
break;
case 'o':
obfs = optarg;
break;
case 'G':
protocol_param = optarg;
break;
case 'g':
obfs_param = optarg;
break;
// SSR end
case 'c':
conf_path = optarg;
break;
case 'i':
iface = optarg;
break;
case 'd':
if (nameserver_num < MAX_DNS_NUM) {
nameservers[nameserver_num++] = optarg;
}
break;
case 'a':
user = optarg;
break;
#ifdef HAVE_SETRLIMIT
case 'n':
nofile = atoi(optarg);
break;
#endif
case 'u':
mode = TCP_AND_UDP;
break;
case 'U':
mode = UDP_ONLY;
break;
case 'v':
verbose = 1;
break;
case 'h':
usage();
exit(EXIT_SUCCESS);
case 'A':
auth = 1;
break;
case '6':
ipv6first = 1;
break;
case '?':
// The option character is not recognized.
LOGE("Unrecognized option: %s", optarg);
opterr = 1;
break;
}
}
if (opterr) {
usage();
exit(EXIT_FAILURE);
}
if (argc == 1) {
if (conf_path == NULL) {
conf_path = DEFAULT_CONF_PATH;
}
}
if (conf_path != NULL) {
jconf_t *conf = read_jconf(conf_path);
if (server_num == 0) {
server_num = conf->remote_num;
for (i = 0; i < server_num; i++)
server_host[i] = conf->remote_addr[i].host;
}
if (server_port == NULL) {
server_port = conf->remote_port;
}
if (password == NULL) {
password = conf->password;
}
// SSR beg
if (protocol == NULL) {
protocol = conf->protocol;
LOGI("protocol %s", protocol);
}
if (protocol_param == NULL) {
protocol_param = conf->protocol_param;
LOGI("protocol_param %s", obfs_param);
}
if (method == NULL) {
method = conf->method;
LOGI("method %s", method);
}
if (obfs == NULL) {
obfs = conf->obfs;
LOGI("obfs %s", obfs);
}
if (obfs_param == NULL) {
obfs_param = conf->obfs_param;
LOGI("obfs_param %s", obfs_param);
}
// SSR end
if (timeout == NULL) {
timeout = conf->timeout;
}
if (user == NULL) {
user = conf->user;
}
if (auth == 0) {
auth = conf->auth;
}
if (mode == TCP_ONLY) {
mode = conf->mode;
}
if (mtu == 0) {
mtu = conf->mtu;
}
if (mptcp == 0) {
mptcp = conf->mptcp;
}
#ifdef TCP_FASTOPEN
if (fast_open == 0) {
fast_open = conf->fast_open;
}
#endif
#ifdef HAVE_SETRLIMIT
if (nofile == 0) {
nofile = conf->nofile;
}
#endif
if (conf->nameserver != NULL) {
nameservers[nameserver_num++] = conf->nameserver;
}
if (ipv6first == 0) {
ipv6first = conf->ipv6_first;
}
}
//_compatible
if(strlen(protocol)>11)
{
char *text;
text = (char*)malloc(12);
memcpy(text, protocol + strlen(protocol) - 11, 12);
if(strcmp(text, "_compatible") == 0)
{
free(text);
text = (char*)malloc(strlen(protocol) - 11);
memcpy(text, protocol, strlen(protocol) - 11);
int length = strlen(protocol) - 11;
free(protocol);
obfs = (char*)malloc(length);
memset(protocol, 0x00, length);
memcpy(protocol, text, length);
LOGI("protocol compatible enable, %s", protocol);
free(text);
protocol_compatible = 1;
}
}
if(strlen(obfs)>11)
{
char *text;
text = (char*)malloc(12);
memcpy(text, obfs + strlen(obfs) - 11, 12);
if(strcmp(text, "_compatible") == 0)
{
free(text);
text = (char*)malloc(strlen(obfs) - 11);
memcpy(text, obfs, strlen(obfs) - 11);
int length = strlen(obfs) - 11;
free(obfs);
obfs = (char*)malloc(length);
memset(obfs, 0x00, length);
memcpy(obfs, text, length);
LOGI("obfs compatible enable, %s", obfs);
free(text);
obfs_compatible = 1;
}
}
if (server_num == 0) {
server_host[server_num++] = NULL;
}
if (server_num == 0 || server_port == NULL || password == NULL) {
usage();
exit(EXIT_FAILURE);
}
if (protocol && strcmp(protocol, "verify_sha1") == 0) {
auth = 1;
protocol = NULL;
}
if (method == NULL) {
method = "rc4-md5";
}
if (timeout == NULL) {
timeout = "60";
}
#ifdef HAVE_SETRLIMIT
/*
* no need to check the return value here since we will show
* the user an error message if setrlimit(2) fails
*/
if (nofile > 1024) {
if (verbose) {
LOGI("setting NOFILE to %d", nofile);
}
set_nofile(nofile);
}
#endif
if (pid_flags) {
USE_SYSLOG(argv[0]);
daemonize(pid_path);
}
if (ipv6first) {
LOGI("resolving hostname to IPv6 address first");
}
if (fast_open == 1) {
#ifdef TCP_FASTOPEN
LOGI("using tcp fast open");
#else
LOGE("tcp fast open is not supported by this environment");
fast_open = 0;
#endif
}
if (auth) {
LOGI("onetime authentication enabled");
}
if (mode != TCP_ONLY) {
LOGI("UDP relay enabled");
}
if (mode == UDP_ONLY) {
LOGI("TCP relay disabled");
}
#ifdef __MINGW32__
winsock_init();
#else
// ignore SIGPIPE
signal(SIGPIPE, SIG_IGN);
signal(SIGCHLD, SIG_IGN);
signal(SIGABRT, SIG_IGN);
#endif
struct ev_signal sigint_watcher;
struct ev_signal sigterm_watcher;
ev_signal_init(&sigint_watcher, signal_cb, SIGINT);
ev_signal_init(&sigterm_watcher, signal_cb, SIGTERM);
ev_signal_start(EV_DEFAULT, &sigint_watcher);
ev_signal_start(EV_DEFAULT, &sigterm_watcher);
// setup keys
LOGI("initializing ciphers... %s", method);
int m = enc_init(password, method);
// initialize ev loop
struct ev_loop *loop = EV_DEFAULT;
// setup udns
if (nameserver_num == 0) {
#ifdef __MINGW32__
nameservers[nameserver_num++] = "8.8.8.8";
resolv_init(loop, nameservers, nameserver_num, ipv6first);
#else
resolv_init(loop, NULL, 0, ipv6first);
#endif
} else {
resolv_init(loop, nameservers, nameserver_num, ipv6first);
}
for (int i = 0; i < nameserver_num; i++)
LOGI("using nameserver: %s", nameservers[i]);
// initialize listen context
listen_ctx_t listen_ctx_list[server_num];
// bind to each interface
while (server_num > 0) {
int index = --server_num;
const char *host = server_host[index];
if (mode != UDP_ONLY) {
// Bind to port
int listenfd;
listenfd = create_and_bind(host, server_port, mptcp);
if (listenfd == -1) {
FATAL("bind() error");
}
if (listen(listenfd, SSMAXCONN) == -1) {
FATAL("listen() error");
}
setfastopen(listenfd);
setnonblocking(listenfd);
listen_ctx_t *listen_ctx = &listen_ctx_list[index];
// Setup proxy context
listen_ctx->timeout = atoi(timeout);
listen_ctx->fd = listenfd;
listen_ctx->method = m;
listen_ctx->iface = iface;
// SSR beg
listen_ctx->protocol_name = protocol;
listen_ctx->protocol_param = protocol_param;
listen_ctx->method = m;
listen_ctx->obfs_name = obfs;
listen_ctx->obfs_param = obfs_param;
listen_ctx->list_protocol_global = malloc(sizeof(void *));
listen_ctx->list_obfs_global = malloc(sizeof(void *));
memset(listen_ctx->list_protocol_global, 0, sizeof(void *));
memset(listen_ctx->list_obfs_global, 0, sizeof(void *));
// SSR end
listen_ctx->loop = loop;
ev_io_init(&listen_ctx->io, accept_cb, listenfd, EV_READ);
ev_io_start(loop, &listen_ctx->io);
}
// Setup UDP
if (mode != TCP_ONLY) {
init_udprelay(server_host[index], server_port, mtu, m,
auth, atoi(timeout), iface, protocol, protocol_param);
}
if (host && strcmp(host, ":") > 0)
LOGI("listening at [%s]:%s", host, server_port);
else
LOGI("listening at %s:%s", host ? host : "*", server_port);
}
if (manager_address != NULL) {
ev_timer_init(&stat_update_watcher, stat_update_cb, UPDATE_INTERVAL, UPDATE_INTERVAL);
ev_timer_start(EV_DEFAULT, &stat_update_watcher);
}
ev_timer_init(&block_list_watcher, block_list_clear_cb, UPDATE_INTERVAL, UPDATE_INTERVAL);
ev_timer_start(EV_DEFAULT, &block_list_watcher);
// setuid
if (user != NULL && ! run_as(user)) {
FATAL("failed to switch user");
}
#ifndef __MINGW32__
if (geteuid() == 0){
LOGI("running from root user");
} else if (firewall) {
LOGE("firewall setup requires running from root user");
exit(-1);
}
#endif
// init block list
init_block_list(firewall);
// Init connections
cork_dllist_init(&connections);
// start ev loop
ev_run(loop, 0);
if (verbose) {
LOGI("closed gracefully");
}
// Free block list
free_block_list();
if (manager_address != NULL) {
ev_timer_stop(EV_DEFAULT, &stat_update_watcher);
}
ev_timer_stop(EV_DEFAULT, &block_list_watcher);
// Clean up
for (int i = 0; i <= server_num; i++) {
listen_ctx_t *listen_ctx = &listen_ctx_list[i];
if (mode != UDP_ONLY) {
ev_io_stop(loop, &listen_ctx->io);
close(listen_ctx->fd);
}
}
if (mode != UDP_ONLY) {
free_connections(loop);
}
if (mode != TCP_ONLY) {
free_udprelay();
}
resolv_shutdown(loop);
#ifdef __MINGW32__
winsock_cleanup();
#endif
ev_signal_stop(EV_DEFAULT, &sigint_watcher);
ev_signal_stop(EV_DEFAULT, &sigterm_watcher);
return 0;
}