cubiomes/finders.c
2018-03-17 16:53:16 +00:00

1143 lines
32 KiB
C

#include "finders.h"
#include <stdio.h>
#include <string.h>
#include <pthread.h>
#include <stdlib.h>
#include <math.h>
/* Globals */
Biome biomes[256];
/******************************** SEED FINDING *********************************
*
* If we want to find rare seeds that meet multiple custom criteria then we
* should test each condition, starting with the one that is the cheapest
* to test for, while ruling out the most seeds.
*
* Biome checks are quite expensive and should be applied late in the
* condition chain (to avoid as many unnecessary checks as possible).
* Fortunately we can often rule out vast amounts of seeds before hand.
*/
/*************************** Quad-Structure Checks *****************************
*
* Several tricks can be applied to determine candidate seeds for quad
* structures.
*
* Minecraft uses a 48-bit pseudo random number generator (PRNG) to determine
* the position of it's structures. The remaining top 16 bits do not influence
* the structure positioning. Additionally the position of all temples in a
* world can be translated by applying the following transformation to the
* seed:
*
* seed2 = seed1 - 14357617 - dregX * 341873128712 - dregZ * 132897987541;
*
* Here seed1 and seed2 have the same structure positioning, but moved by a
* region offset of (dregX,dregZ). [a region is 32x32 chunks]
*
* For a quad-structure, we mainly care about relative positioning, so we can
* get away with just checking the regions near the origin: (0,0),(0,1),(1,0)
* and (1,1) and then move the structures to the desired position.
*
* Lastly we can recognise a that the transformation of relative region-
* coordinates imposes some restrictions in the PRNG, such that
* perfect-position quad-structure-seeds can only have certain values for the
* lower 16-bits in their seeds.
*
*
** Set of all Quad-Witch-Huts
*
* These conditions only leave 32 free bits which can comfortably be brute-
* forced to get the entire set of quad-structure candidates. Each of the seeds
* found this way describes an entire set of possible quad-witch-huts
* (with degrees of freedom for region-transposition, and the top 16-bit bits).
*/
#define SEEDMAX (1L << 48)
typedef struct quad_threadinfo_t
{
long start, end;
int threadID;
int quality;
const char *fnam;
} quad_threadinfo_t;
const long lowerBaseBitsQ1[] = // for quad-structure with quality 1
{
0x2aa7,0x3d99,0x60a9,0x8599
};
const long lowerBaseBitsQ2[] = // for quad-structure with quality 2
{
0x0825,0x0bd7,0x0c77,0x0dd7,0x0dd9,0x0e57,0x111c,0x12bc,0x12c1,
0x12c8,0x12e7,0x12ec,0x1357,0x1358,0x1638,0x17c9,0x1849,0x1a47,
0x1c1b,0x1d95,0x22a9,0x241f,0x2899,0x2aa7,0x2bf7,0x2c59,0x2c77,
0x2d19,0x2dd7,0x2df9,0x2e79,0x32c1,0x32c7,0x32c8,0x32f4,0x32f7,
0x32f9,0x333f,0x3344,0x3363,0x3368,0x3377,0x37e7,0x39c7,0x3a47,
0x3a69,0x3ca7,0x3d99,0x41a7,0x44a7,0x44ac,0x4597,0x49a7,0x4aab,
0x4c59,0x52c8,0x52d7,0x52d8,0x52e7,0x5305,0x5343,0x5348,0x5358,
0x5367,0x536c,0x537b,0x57c9,0x57e7,0x5849,0x5929,0x59e9,0x5a67,
0x5a69,0x5c97,0x5d09,0x60a9,0x61a7,0x64ab,0x6bf7,0x6d15,0x6dd7,
0x6dd9,0x6e57,0x6e79,0x72bf,0x72c8,0x72d7,0x72f7,0x7348,0x7358,
0x735d,0x7368,0x751c,0x77c9,0x7869,0x79c7,0x7a47,0x80ad,0x82a7,
0x8599,0x8bd9,0x8bf7,0x8c59,0x8c77,0x8d19,0x8df9,0x8e77,0x8e79,
0x8fcc,0x9070,0x9118,0x92fc,0x933b,0x9340,0x937c,0x93ec,0x93fc,
0x95bc,0x9d87,0x9da6,0xa587,0xa598,0xa5a6,0xa69e,0xb0db,0xb288,
0xb4e3,0xb55d,0xc29a,0xc2a8,0xc7e4,0xca9a,0xcd53,0xd0e5,0xd118,
0xd5ec,0xf2ff,0xf304,0xf33c,0xf341,0xf7c9,0xf7e7,0xf849,0xf867,
0xf9c7,0xf9e9,0xfa67,0xfa69,0xfcab
};
int isQuadTempleBase(const long seed, const long lower, const long upper)
{
// seed offsets for the regions (0,0) to (1,1)
const long reg00base = 14357617;
const long reg01base = 341873128712 + 14357617;
const long reg10base = 132897987541 + 14357617;
const long reg11base = 341873128712 + 132897987541 + 14357617;
long s;
s = (reg00base + seed) ^ 0x5DEECE66DL; // & 0xffffffffffff;
s = (s * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
if((s >> 17) % 24 < upper) return 0;
s = (s * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
if((s >> 17) % 24 < upper) return 0;
s = (reg01base + seed) ^ 0x5DEECE66DL; // & 0xffffffffffff;
s = (s * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
if((s >> 17) % 24 > lower) return 0;
s = (s * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
if((s >> 17) % 24 < upper) return 0;
s = (reg10base + seed) ^ 0x5DEECE66DL; // & 0xffffffffffff;
s = (s * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
if((s >> 17) % 24 < upper) return 0;
s = (s * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
if((s >> 17) % 24 > lower) return 0;
s = (reg11base + seed) ^ 0x5DEECE66DL; // & 0xffffffffffff;
s = (s * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
if((s >> 17) % 24 > lower) return 0;
s = (s * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
if((s >> 17) % 24 > lower) return 0;
return 1;
}
long moveTemple(const long baseSeed, const int regionX, const int regionZ)
{
return (baseSeed - regionX*341873128712 - regionZ*132897987541) & 0xffffffffffff;
}
long *loadSavedSeeds(const char *fnam, long *scnt)
{
FILE *fp = fopen(fnam, "r");
long seed;
long *baseSeeds;
if(fp == NULL)
{
perror("ERR loadSavedSeeds: ");
return NULL;
}
*scnt = 0;
while(!feof(fp))
{
if(fscanf(fp, "%ld", &seed) == 1) (*scnt)++;
else while(!feof(fp) && fgetc(fp) != '\n');
}
baseSeeds = (long*) calloc(*scnt, sizeof(*baseSeeds));
rewind(fp);
for(long i = 0; i < *scnt && !feof(fp);)
{
if(fscanf(fp, "%ld", &baseSeeds[i]) == 1) i++;
else while(!feof(fp) && fgetc(fp) != '\n');
}
fclose(fp);
return baseSeeds;
}
static void *baseQuadTempleSearchThread(void *data)
{
quad_threadinfo_t info = *(quad_threadinfo_t*)data;
const long lower = info.quality;
const long upper = 23-info.quality;
const long start = info.start;
const long end = info.end;
long seed;
const long *lowerBits;
int lowerBitsCnt;
int lowerBitsIdx = 0;
if(info.quality == 1)
{
lowerBits = &lowerBaseBitsQ1[0];
lowerBitsCnt = sizeof(lowerBaseBitsQ1) / sizeof(lowerBaseBitsQ1[0]);
}
else if(info.quality == 2)
{
lowerBits = &lowerBaseBitsQ2[0];
lowerBitsCnt = sizeof(lowerBaseBitsQ2) / sizeof(lowerBaseBitsQ2[0]);
}
else
{
printf("WARN baseQuadTempleSearchThread: "
"Lower bits for quality %d have not been defined => "
"will try all combinations.\n", info.quality);
static long lowerBaseBitsAll[65536];
lowerBits = &lowerBaseBitsAll[0];
lowerBitsCnt = sizeof(lowerBaseBitsAll) / sizeof(lowerBaseBitsAll[0]);
int i;
for(i = 0; i < 65536; i++) lowerBaseBitsAll[i] = i;
}
char fnam[256];
sprintf(fnam, "%s.part%d", info.fnam, info.threadID);
FILE *fp = fopen(fnam, "a+");
seed = start;
// Check the last entry in the file and use it as a starting point if it
// exists. (I.e. loading the saved progress.)
if(!fseek(fp, -31, SEEK_END))
{
char buf[32];
if(fread(buf, 30, 1, fp) > 0)
{
char *last_newline = strrchr(buf, '\n');
if(sscanf(last_newline, "%ld", &seed) == 1)
{
while(lowerBits[lowerBitsIdx] <= (seed & 0xffff))
lowerBitsIdx++;
seed = (seed & 0x0000ffffffff0000) + lowerBits[lowerBitsIdx];
printf("Thread %d starting from: %ld\n", info.threadID, seed);
}
else
{
seed = start;
}
}
}
fseek(fp, 0, SEEK_END);
while(seed < end)
{
if(isQuadTempleBase(seed, lower, upper))
{
fprintf(fp, "%ld\n", seed);
fflush(fp);
//printf("Thread %d: %ld\n", info.threadID, seed);
}
lowerBitsIdx++;
if(lowerBitsIdx >= lowerBitsCnt)
{
lowerBitsIdx = 0;
seed += 0x10000;
}
seed = (seed & 0x0000ffffffff0000) + lowerBits[lowerBitsIdx];
}
fclose(fp);
return NULL;
}
void baseQuadTempleSearch(const char *fnam, const int threads, const int quality)
{
pthread_t threadID[threads];
quad_threadinfo_t info[threads];
long t;
for(t = 0; t < threads; t++)
{
info[t].threadID = t;
info[t].start = (t * SEEDMAX / threads) & 0x0000ffffffff0000;
info[t].end = ((info[t].start + (SEEDMAX-1) / threads) & 0x0000ffffffff0000) + 1;
info[t].fnam = fnam;
info[t].quality = quality;
}
for(t = 0; t < threads; t++)
{
pthread_create(&threadID[t], NULL, baseQuadTempleSearchThread, (void*)&info[t]);
}
for(t = 0; t < threads; t++)
{
pthread_join(threadID[t], NULL);
}
// merge thread parts
char fnamThread[256];
char buffer[4097];
FILE *fp = fopen(fnam, "w");
FILE *fpart;
int n;
for(t = 0; t < threads; t++)
{
sprintf(fnamThread, "%s.part%d", info[t].fnam, info[t].threadID);
fpart = fopen(fnamThread, "r");
if(fpart == NULL)
{
perror("ERR baseQuadTempleSearch: ");
break;
}
while((n = fread(buffer, sizeof(char), 4096, fpart)))
{
if(!fwrite(buffer, sizeof(char), n, fp))
{
perror("ERR baseQuadTempleSearch: ");
fclose(fp);
fclose(fpart);
return;
}
}
fclose(fpart);
remove(fnamThread);
}
fclose(fp);
}
/*************************** General Purpose Checks ****************************
*/
/* getBiomeAtPos
* ----------------
* Returns the biome for the specified block position.
*/
int getBiomeAtPos(const LayerStack g, const Pos pos)
{
static int ints[0x1000];
genArea(&g.layers[g.layerNum-1], &ints[0], pos.x, pos.z, 1, 1);
return ints[0];
}
/* getTemplePos
* ------------
* Fast implementation for finding the block position at which the temple
* generation attempt will occur in the specified region.
*/
Pos getTemplePos(long seed, const long regionX, const long regionZ)
{
Pos pos;
// set seed
seed = regionX*341873128712 + regionZ*132897987541 + seed + 14357617;
seed = (seed ^ 0x5DEECE66DL);// & ((1L << 48) - 1);
seed = (seed * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
pos.x = (seed >> 17) % 24;
seed = (seed * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
pos.z = (seed >> 17) % 24;
pos.x = regionX*512 + (pos.x << 4) + 8;
pos.z = regionZ*512 + (pos.z << 4) + 8;
return pos;
}
/* getTempleChunkInRegion
* ----------------------
* Finds the chunk position within the specified region (32x32 chunks) where
* the temple generation attempt will occur.
*/
Pos getTempleChunkInRegion(long seed, const int regionX, const int regionZ)
{
/*
// Vanilla like implementation.
seed = regionX*341873128712 + regionZ*132897987541 + seed + 14357617;
setSeed(&(seed));
Pos pos;
pos.x = nextInt(&seed, 24);
pos.z = nextInt(&seed, 24);
*/
Pos pos;
// set seed
seed = regionX*341873128712 + regionZ*132897987541 + seed + 14357617;
seed = (seed ^ 0x5DEECE66DL);// & ((1L << 48) - 1);
seed = (seed * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
pos.x = (seed >> 17) % 24;
seed = (seed * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
pos.z = (seed >> 17) % 24;
return pos;
}
/* getVillagePos
* -------------
* Fast implementation for finding the block position at which the village
* generation attempt will occur in the specified region.
*/
Pos getVillagePos(long seed, const long regionX, const long regionZ)
{
Pos pos;
// set seed
seed = regionX*341873128712 + regionZ*132897987541 + seed + 10387312;
seed = (seed ^ 0x5DEECE66DL);// & ((1L << 48) - 1);
seed = (seed * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
pos.x = (seed >> 17) % 24;
seed = (seed * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
pos.z = (seed >> 17) % 24;
pos.x = regionX*512 + (pos.x << 4) + 8;
pos.z = regionZ*512 + (pos.z << 4) + 8;
return pos;
}
/* getOceanMonumentPos
* -------------------
* Fast implementation for finding the block position at which the ocean
* monument generation attempt will occur in the specified region.
*/
Pos getOceanMonumentPos(long seed, const long regionX, const long regionZ)
{
Pos pos;
// set seed
seed = regionX*341873128712 + regionZ*132897987541 + seed + 10387313;
seed = (seed ^ 0x5DEECE66DL);// & ((1L << 48) - 1);
seed = (seed * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
pos.x = (seed >> 17) % 27;
seed = (seed * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
pos.x += (seed >> 17) % 27;
seed = (seed * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
pos.z = (seed >> 17) % 27;
seed = (seed * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
pos.z += (seed >> 17) % 27;
pos.x = regionX*512 + (pos.x << 3) + 8;
pos.z = regionZ*512 + (pos.z << 3) + 8;
return pos;
}
/* getMansionPos
* -------------
* Fast implementation for finding the block position at which the woodland
* mansions generation attempt will occur in the specified 80x80 chunk area.
*
* area80X, area80Z: area coordinates in units 1280 blocks (= 80 chunks)
*/
Pos getMansionPos(long seed, const long area80X, const long area80Z)
{
Pos pos;
// set seed
seed = area80X*341873128712 + area80Z*132897987541 + seed + 10387319;
seed = (seed ^ 0x5DEECE66DL);// & ((1L << 48) - 1);
seed = (seed * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
pos.x = (seed >> 17) % 60;
seed = (seed * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
pos.x += (seed >> 17) % 60;
seed = (seed * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
pos.z = (seed >> 17) % 60;
seed = (seed * 0x5DEECE66DL + 0xBL) & 0xffffffffffff;
pos.z += (seed >> 17) % 60;
pos.x = area80X*1280 + (pos.x << 3) + 8;
pos.z = area80Z*1280 + (pos.z << 3) + 8;
return pos;
}
/* findBiomePosition
* -----------------
* Finds a suitable pseudo-random location in the specified area.
* Used to determine the positions of spawn and stongholds.
* Warning: accurate, but slow!
*
* g : generator layer stack
* cache : biome buffer, set to NULL for temporary allocation
* centreX, centreZ : origin for the search
* range : 'radius' of the search
* isValid : boolean array of valid biome ids (size = 256)
* seed : seed used for the RNG
* (usually you want to initialise this with the world seed)
* passes : number of valid biomes passed, set to NULL to ignore this
*/
Pos findBiomePosition(
const LayerStack g,
int *cache,
const int centerX,
const int centerZ,
const int range,
const int *isValid,
long *seed,
int *passes
)
{
int x1 = (centerX-range) >> 2;
int z1 = (centerZ-range) >> 2;
int x2 = (centerX+range) >> 2;
int z2 = (centerZ+range) >> 2;
int width = x2 - x1 + 1;
int height = z2 - z1 + 1;
int *map;
int i, found;
Layer *layer = &g.layers[L_RIVER_MIX_4];
Pos out;
if(layer->scale != 4)
{
printf("WARN findBiomePosition: The generator has unexpected scale %d at layer %d.\n",
layer->scale, L_RIVER_MIX_4);
}
map = cache ? cache : allocCache(layer, width, height);
genArea(layer, map, x1, z1, width, height);
out.x = 0;
out.z = 0;
found = 0;
for(i = 0; i < width*height; i++)
{
if(isValid[map[i] & 0xff] && (found == 0 || nextInt(seed, found + 1) == 0))
{
out.x = (x1 + i%width) << 2;
out.z = (z1 + i/width) << 2;
++found;
}
}
if(cache == NULL)
{
free(map);
}
if(passes != NULL)
{
*passes = found;
}
return out;
}
/* findStrongholds_pre19
* ---------------------
* Finds the 3 stronghold positions for the specified world seed up to MC 1.9.
* Warning: Slow!
*
* g : generator layer stack [world seed will be updated]
* cache : biome buffer, set to NULL for temporary allocation
* locations : output block positions for the 3 strongholds
* worldSeed : world seed used for the generator
*/
void findStrongholds_pre19(LayerStack *g, int *cache, Pos *locations, long worldSeed)
{
static int validStrongholdBiomes[256];
const int SHNUM = 3;
int i;
if(!validStrongholdBiomes[plains])
{
int id;
for(id = 0; id < 256; id++)
{
if(biomeExists(id) && biomes[id].height > 0.0) validStrongholdBiomes[id] = 1;
}
}
setWorldSeed(&g->layers[L_RIVER_MIX_4], worldSeed);
setSeed(&worldSeed);
double angle = nextDouble(&worldSeed) * 3.141592653589793 * 2.0;
for(i = 0; i < SHNUM; i++)
{
double distance = (1.25 + nextDouble(&worldSeed)) * 32.0;
int x = (int)round(cos(angle) * distance);
int z = (int)round(sin(angle) * distance);
locations[i] = findBiomePosition(*g, cache, (x << 4) + 8, (z << 4) + 8, 112,
validStrongholdBiomes, &worldSeed, NULL);
angle += 6.283185307179586 / (double)SHNUM;
}
}
/* TODO: Estimate whether the given positions could be spawn based on biomes.
*/
static int canCoordinateBeSpawn(LayerStack *g, int *cache, Pos pos)
{
return 1;
}
/* getSpawn
* --------
* Finds the spawn point in the world.
* Warning: Slow, and may be inaccurate because the world spawn depends on
* grass blocks!
*
* g : generator layer stack [world seed will be updated]
* cache : biome buffer, set to NULL for temporary allocation
* worldSeed : world seed used for the generator
*/
Pos getSpawn(LayerStack *g, int *cache, long worldSeed)
{
static int isSpawnBiome[0x100];
Pos spawn;
int found;
uint i;
if(!isSpawnBiome[biomesToSpawnIn[0]])
{
for(i = 0; i < sizeof(biomesToSpawnIn) / sizeof(int); i++)
{
isSpawnBiome[ biomesToSpawnIn[i] ] = 1;
}
}
applySeed(g, worldSeed);
setSeed(&worldSeed);
spawn = findBiomePosition(*g, cache, 0, 0, 256, isSpawnBiome, &worldSeed, &found);
if(!found)
{
printf("Unable to find spawn biome.\n");
spawn.x = spawn.z = 8;
}
for(i = 0; i < 1000 && !canCoordinateBeSpawn(g, cache, spawn); i++)
{
spawn.x += nextInt(&worldSeed, 64) - nextInt(&worldSeed, 64);
spawn.z += nextInt(&worldSeed, 64) - nextInt(&worldSeed, 64);
}
return spawn;
}
/* areBiomesViable
* ---------------
* Determines if the given area contains only biomes specified by 'biomeList'.
* Used to determine the positions of ocean monuments and villages.
* Warning: accurate, but slow!
*
* g : generator layer stack
* cache : biome buffer, set to NULL for temporary allocation
* posX, posZ : centre for the check
* radius : 'radius' of the check area
* isValid : boolean array of valid biome ids (size = 256)
*/
int areBiomesViable(
const LayerStack g,
int *cache,
const int posX,
const int posZ,
const int radius,
const int *isValid
)
{
int x1 = (posX - radius) >> 2;
int z1 = (posZ - radius) >> 2;
int x2 = (posX + radius) >> 2;
int z2 = (posZ + radius) >> 2;
int width = x2 - x1 + 1;
int height = z2 - z1 + 1;
int i;
int *map;
Layer *layer = &g.layers[L_RIVER_MIX_4];
if(layer->scale != 4)
{
printf("WARN areBiomesViable: The generator has unexpected scale %d at layer %d.\n",
layer->scale, L_RIVER_MIX_4);
}
map = cache ? cache : allocCache(layer, width, height);
genArea(layer, map, x1, z1, width, height);
for(i = 0; i < width*height; i++)
{
if(!isValid[ map[i] & 0xff ])
{
if(cache == NULL) free(map);
return 0;
}
}
if(cache == NULL) free(map);
return 1;
}
int isViableTemplePos(const LayerStack g, int *cache, const long blockX, const long blockZ)
{
static int map[0x100];
genArea(&g.layers[L_VORONOI_ZOOM_1], map, blockX, blockZ, 1, 1);
if(map[0] == jungle || map[0] == jungleHills) return JUNGLE_TEMPLE;
if(map[0] == swampland) return SWAMP_HUT;
if(map[0] == icePlains || map[0] == coldTaiga) return IGLOO;
if(map[0] == desert || map[0] == desertHills) return DESERT_TEMPLE;
return 0;
}
int isViableVillagePos(const LayerStack g, int *cache, const long blockX, const long blockZ)
{
static int isVillageBiome[0x100];
if(!isVillageBiome[villageBiomeList[0]])
{
uint i;
for(i = 0; i < sizeof(villageBiomeList) / sizeof(int); i++)
{
isVillageBiome[ villageBiomeList[i] ] = 1;
}
}
return areBiomesViable(g, cache, blockX, blockZ, 0, isVillageBiome);
}
int isViableOceanMonumentPos(const LayerStack g, int *cache, const long blockX, const long blockZ)
{
static int isWaterBiome[0x100];
static int isDeepOcean[0x100];
if(!isWaterBiome[oceanMonumentBiomeList[0]])
{
uint i;
for(i = 0; i < sizeof(oceanMonumentBiomeList) / sizeof(int); i++)
{
isWaterBiome[ oceanMonumentBiomeList[i] ] = 1;
}
isDeepOcean[deepOcean] = 1;
}
return areBiomesViable(g, cache, blockX, blockZ, 16, isDeepOcean) &&
areBiomesViable(g, cache, blockX, blockZ, 29, isWaterBiome);
}
int isViableMansionPos(const LayerStack g, int *cache, const long blockX, const long blockZ)
{
static int isMansionBiome[0x100];
if(!isMansionBiome[mansionBiomeList[0]])
{
uint i;
for(i = 0; i < sizeof(mansionBiomeList) / sizeof(int); i++)
{
isMansionBiome[ mansionBiomeList[i] ] = 1;
}
}
return areBiomesViable(g, cache, blockX, blockZ, 32, isMansionBiome);
}
/* getBiomeRadius
* --------------
* Finds the smallest radius (by square around the origin) at which all the
* specified biomes are present. The input map is assumed to be a square of
* side length 'sideLen'.
*
* map : square biome map to be tested
* sideLen : side length of the square map (should be 2*radius+1)
* biomes : list of biomes to check for
* bnum : length of 'biomes'
* ignoreMutations : flag to count mutated biomes as their original form
*
* Return the radius on the square map that covers all biomes in the list.
* If the map does not contain all the specified biomes, -1 is returned.
*/
int getBiomeRadius(
const int *map,
const int mapSide,
const int *biomes,
const int bnum,
const int ignoreMutations)
{
int r, i, b;
int blist[0x100];
int mask = ignoreMutations ? 0x7f : 0xff;
int radiusMax = mapSide / 2;
if((mapSide & 1) == 0)
{
printf("WARN getBiomeRadius: Side length of the square map should be an odd integer.\n");
}
memset(blist, 0, sizeof(blist));
for(r = 1; r < radiusMax; r++)
{
for(i = radiusMax-r; i <= radiusMax+r; i++)
{
blist[ map[(radiusMax-r) * mapSide+ i] & mask ] = 1;
blist[ map[(radiusMax+r-1) * mapSide + i] & mask ] = 1;
blist[ map[mapSide*i + (radiusMax-r)] & mask ] = 1;
blist[ map[mapSide*i + (radiusMax+r-1)] & mask ] = 1;
}
for(b = 0; b < bnum && blist[biomes[b] & mask]; b++);
if(b >= bnum)
{
break;
}
}
return r != radiusMax ? r : -1;
}
/* filterAllTempCats
* -----------------
* Looks through the seeds in 'seedsIn' and copies those for which all
* temperature categories are present in the 3x3 area centred on the specified
* coordinates into 'seedsOut'. The map scale at this layer is 1:1024.
*
* g : generator layer stack, (NOTE: seed will be modified)
* cache : biome buffer, set to NULL for temporary allocation
* seedsIn : list of seeds to check
* seedsOut : output buffer for the candidate seeds
* seedCnt : number of seeds in 'seedsIn'
* centX, centZ: search origin centre (in 1024 block units)
*
* Returns the number of found candidates.
*/
long filterAllTempCats(
LayerStack *g,
int *cache,
const long *seedsIn,
long *seedsOut,
const long seedCnt,
const int centX,
const int centZ)
{
/* We require all temperature categories, including the special variations
* in order to get all main biomes. This gives 8 required values:
* Oceanic, Warm, Lush, Cold, Freezing,
* Special Warm, Special Lush, Special Cold
* These categories generate at Layer 13: Edge, Special.
*
* Note: The scale at this layer is 1:1024 and each element can "leak" its
* biome values up to 1024 blocks outwards into the negative coordinates
* (due to the Zoom layers).
*
* The plan is to check if the 3x3 area contains all 8 temperature types.
* For this, we can check even earlier at Layer 10: Add Island, that each of
* the Warm, Cold and Freezing categories are present.
*/
/* Edit:
* All the biomes that are generated by a simple Cold climate can actually
* be generated later on. So I have commented out the Cold requirements.
*/
const int pX = centX-1, pZ = centZ-1;
const int sX = 3, sZ = 3;
int *map;
Layer *lFilterSnow = &g->layers[L_ADD_SNOW_1024];
Layer *lFilterSpecial = &g->layers[L_SPECIAL_1024];
map = cache ? cache : allocCache(lFilterSpecial, sX, sZ);
// Construct a dummy Edge,Special layer.
Layer layerSpecial;
setupLayer(1024, &layerSpecial, NULL, 3, NULL);
long sidx, hits, seed;
int types[9];
int specialCnt;
int i, j;
hits = 0;
for(sidx = 0; sidx < seedCnt; sidx++)
{
seed = seedsIn[sidx];
/*** Pre-Generation Checks ***/
// We require at least 3 special temperature categories which can be
// tested for without going through the previous layers. (We'll get
// false positives due to Oceans, but this works fine to rule out some
// seeds early on.)
setWorldSeed(&layerSpecial, seed);
specialCnt = 0;
for(i = 0; i < sX; i++)
{
for(j = 0; j < sZ; j++)
{
setChunkSeed(&layerSpecial, (long)(i+pX), (long)(j+pZ));
if(mcNextInt(&layerSpecial, 13) == 0)
specialCnt++;
}
}
if(specialCnt < 3)
{
continue;
}
/*** Cold/Warm Check ***/
// Continue by checking if enough cold and warm categories are present.#
setWorldSeed(lFilterSnow, seed);
genArea(lFilterSnow, map, pX,pZ, sX,sZ);
memset(types, 0, sizeof(types));
for(i = 0; i < sX*sZ; i++)
types[map[i]]++;
// 1xOcean needs to be present
// 4xWarm need to turn into Warm, Lush, Special Warm and Special Lush
// 1xFreezing that needs to stay Freezing
// 3x(Cold + Freezing) for Cold, Special Cold and Freezing
if( types[Ocean] < 1 || types[Warm] < 4 || types[Freezing] < 1 ||
types[Cold]+types[Freezing] < 2)
{
continue;
}
/*** Complete Temperature Category Check ***/
// Check that all temperature variants are present.
setWorldSeed(lFilterSpecial, seed);
genArea(lFilterSpecial, map, pX,pZ, sX,sZ);
memset(types, 0, sizeof(types));
for(i = 0; i < sX*sZ; i++)
types[ map[i] > 4 ? (map[i]&0xf) + 4 : map[i] ]++;
if( types[Ocean] < 1 || types[Warm] < 1 || types[Lush] < 1 ||
/*types[Cold] < 1 ||*/ types[Freezing] < 1 ||
types[Warm+4] < 1 || types[Lush+4] < 1 || types[Cold+4] < 1)
{
continue;
}
/*
for(i = 0; i < sX*sZ; i++)
{
printf("%c%d ", " s"[cache[i] > 4], cache[i]&0xf);
if(i % sX == sX-1) printf("\n");
}
printf("\n");*/
// Save the candidate.
seedsOut[hits] = seed;
hits++;
}
if(cache == NULL) free(map);
return hits;
}
const int majorBiomes[] = {
ocean, plains, desert, extremeHills, forest, taiga, swampland,
icePlains, mushroomIsland, jungle, deepOcean, birchForest, roofedForest,
coldTaiga, megaTaiga, savanna, mesaPlateau_F, mesaPlateau
};
/* filterAllMajorBiomes
* --------------------
* Looks through the list of seeds in 'seedsIn' and copies those that have all
* major overworld biomes in the specified area into 'seedsOut'. These checks
* are done at a scale of 1:256.
*
* g : generator layer stack, (NOTE: seed will be modified)
* cache : biome buffer, set to NULL for temporary allocation
* seedsIn : list of seeds to check
* seedsOut : output buffer for the candidate seeds
* seedCnt : number of seeds in 'seedsIn'
* pX, pZ : search starting coordinates (in 256 block units)
* sX, sZ : size of the searching area (in 256 block units)
*
* Returns the number of seeds found.
*/
long filterAllMajorBiomes(
LayerStack *g,
int *cache,
const long *seedsIn,
long *seedsOut,
const long seedCnt,
const int pX,
const int pZ,
const uint sX,
const uint sZ)
{
Layer *lFilterMushroom = &g->layers[L_ADD_MUSHROOM_ISLAND_256];
Layer *lFilterBiomes = &g->layers[L_BIOME_256];
int *map;
long sidx, seed, hits;
uint i, id, hasAll;
int types[BIOME_NUM];
map = cache ? cache : allocCache(lFilterBiomes, sX, sZ);
hits = 0;
for(sidx = 0; sidx < seedCnt; sidx++)
{
/* We can use the Mushroom layer both to check for mushroomIsland biomes
* and to make sure all temperature categories are present in the area.
*/
seed = seedsIn[sidx];
setWorldSeed(lFilterMushroom, seed);
genArea(lFilterMushroom, map, pX,pZ, sX,sZ);
memset(types, 0, sizeof(types));
for(i = 0; i < sX*sZ; i++)
{
id = map[i];
if(id >= BIOME_NUM) id = (id & 0xf) + 4;
types[id]++;
}
if( types[Ocean] < 1 || types[Warm] < 1 || types[Lush] < 1 ||
/* types[Cold] < 1 || */ types[Freezing] < 1 ||
types[Warm+4] < 1 || types[Lush+4] < 1 || types[Cold+4] < 1 ||
types[mushroomIsland] < 1)
{
continue;
}
/*** Find all major biomes ***/
setWorldSeed(lFilterBiomes, seed);
genArea(lFilterBiomes, map, pX,pZ, sX,sZ);
memset(types, 0, sizeof(types));
for(i = 0; i < sX*sZ; i++)
{
types[map[i]]++;
}
hasAll = 1;
for(i = 0; i < sizeof(majorBiomes) / sizeof(*majorBiomes); i++)
{
// plains, taiga and deepOcean can be generated in later layers.
// Also small islands of Forests can be generated in deepOcean
// biomes, but we are going to ignore those.
if(majorBiomes[i] == plains ||
majorBiomes[i] == taiga ||
majorBiomes[i] == deepOcean)
{
continue;
}
if(types[majorBiomes[i]] < 1)
{
hasAll = 0;
break;
}
}
if(!hasAll)
{
continue;
}
seedsOut[hits] = seed;
hits++;
}
if(cache == NULL) free(map);
return hits;
}