mirror of
https://github.com/Cubitect/cubiomes.git
synced 2025-04-04 22:33:33 +08:00
416 lines
15 KiB
C
416 lines
15 KiB
C
#ifndef LAYER_H_
|
|
#define LAYER_H_
|
|
|
|
#include "javarnd.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
|
|
|
|
#if defined USE_SIMD && __AVX2__
|
|
#include <emmintrin.h>
|
|
#include <smmintrin.h>
|
|
#include <immintrin.h>
|
|
#warning "Using AVX2 extensions."
|
|
#elif defined USE_SIMD && defined __SSE4_2__
|
|
#include <emmintrin.h>
|
|
#include <smmintrin.h>
|
|
#warning "Using SSE4.2 extensions."
|
|
#else
|
|
//#warning "Using no SIMD extensions."
|
|
#endif
|
|
|
|
#define STRUCT(S) typedef struct S S; struct S
|
|
|
|
#define OPT_O2 __attribute__((optimize("O2")))
|
|
|
|
|
|
enum BiomeID {
|
|
none = -1,
|
|
ocean = 0, plains, desert, extremeHills, forest, taiga, swampland, river, hell, sky, // 0-9
|
|
frozenOcean, frozenRiver, icePlains, iceMountains, mushroomIsland, mushroomIslandShore, beach, desertHills, forestHills, taigaHills, // 10-19
|
|
extremeHillsEdge, jungle, jungleHills, jungleEdge, deepOcean, stoneBeach, coldBeach, birchForest, birchForestHills, roofedForest, // 20-29
|
|
coldTaiga, coldTaigaHills, megaTaiga, megaTaigaHills, extremeHillsPlus, savanna, savannaPlateau, mesa, mesaPlateau_F, mesaPlateau, // 30-39
|
|
// 1.13
|
|
skyIslandLow, skyIslandMedium, skyIslandHigh, skyIslandBarren, warmOcean, lukewarmOcean, coldOcean, warmDeepOcean, lukewarmDeepOcean, coldDeepOcean, // 40-49
|
|
frozenDeepOcean,
|
|
BIOME_NUM
|
|
};
|
|
|
|
enum BiomeType {
|
|
Ocean, Plains, Desert, Hills, Forest, Taiga, Swamp, River, Hell, Sky, Snow, MushroomIsland, Beach, Jungle, StoneBeach, Savanna, Mesa, BTYPE_NUM
|
|
};
|
|
|
|
enum BiomeTempCategory {
|
|
Oceanic, Warm, Lush, Cold, Freezing, Unknown
|
|
};
|
|
|
|
|
|
STRUCT(Biome)
|
|
{
|
|
int id;
|
|
int type;
|
|
double height;
|
|
double temp;
|
|
int tempCat;
|
|
};
|
|
|
|
|
|
STRUCT(OceanRnd)
|
|
{
|
|
int d[512];
|
|
double a, b, c;
|
|
};
|
|
|
|
STRUCT(Layer)
|
|
{
|
|
int64_t baseSeed; // Generator seed (depends only on layer hierarchy)
|
|
int64_t worldSeed; // based on the seed of the world
|
|
|
|
int64_t chunkSeed; // randomiser seed
|
|
|
|
OceanRnd *oceanRnd; // world seed dependent data for ocean temperatures
|
|
|
|
int scale; // map scale of this layer (map entry = scale x scale blocks)
|
|
|
|
void (*getMap)(Layer *layer, int *out, int x, int z, int w, int h);
|
|
|
|
Layer *p, *p2; // parent layers
|
|
};
|
|
|
|
|
|
extern Biome biomes[256];
|
|
|
|
|
|
/* initBiomes() has to be called before any of the generators can be used */
|
|
void initBiomes();
|
|
|
|
/* setWorldSeed
|
|
* ------------
|
|
* Applies the given world seed to the layer and all dependent layers.
|
|
*/
|
|
void setWorldSeed(Layer *layer, int64_t seed);
|
|
|
|
|
|
|
|
static inline int getBiomeType(int id)
|
|
{
|
|
return biomes[id & 0xff].type;
|
|
}
|
|
|
|
static inline int biomeExists(int id)
|
|
{
|
|
return !(biomes[id & 0xff].id & (~0xff));
|
|
}
|
|
|
|
static inline int getTempCategory(int id)
|
|
{
|
|
return biomes[id & 0xff].tempCat;
|
|
}
|
|
|
|
|
|
static inline int equalOrPlateau(int id1, int id2)
|
|
{
|
|
if(id1 == id2) return 1;
|
|
if(id1 == mesaPlateau_F || id1 == mesaPlateau) return id2 == mesaPlateau_F || id2 == mesaPlateau;
|
|
if(!biomeExists(id1) || !biomeExists(id2)) return 0;
|
|
// adjust for asymmetric equality (workaround to simulate a bug in the MC java code)
|
|
if(id1 >= 128 || id2 >= 128) {
|
|
// skip biomes that did not overload the isEqualTo() method
|
|
if(id2 == 130 || id2 == 133 || id2 == 134 || id2 == 149 || id2 == 151 || id2 == 155 ||
|
|
id2 == 156 || id2 == 157 || id2 == 158 || id2 == 163 || id2 == 164) return 0;
|
|
}
|
|
return getBiomeType(id1) == getBiomeType(id2);
|
|
}
|
|
|
|
static inline int canBeNeighbors(int id1, int id2)
|
|
{
|
|
if(equalOrPlateau(id1, id2)) return 1;
|
|
if(!biomeExists(id1) || !biomeExists(id2)) return 0;
|
|
int tempCat1 = getTempCategory(id1); if(tempCat1 == Lush) return 1;
|
|
int tempCat2 = getTempCategory(id2); if(tempCat2 == Lush) return 1;
|
|
return tempCat1 == tempCat2;
|
|
}
|
|
|
|
static inline int isShallowOcean(int id)
|
|
{
|
|
return id == ocean || id == frozenOcean ||
|
|
id == warmOcean || id == lukewarmOcean || id == coldOcean;
|
|
}
|
|
|
|
static inline int isOceanic(int id)
|
|
{
|
|
switch(id)
|
|
{
|
|
case ocean:
|
|
case deepOcean:
|
|
case warmOcean:
|
|
case warmDeepOcean:
|
|
case lukewarmOcean:
|
|
case lukewarmDeepOcean:
|
|
case coldOcean:
|
|
case coldDeepOcean:
|
|
case frozenOcean:
|
|
case frozenDeepOcean:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
static inline int isBiomeSnowy(int id)
|
|
{
|
|
return biomeExists(id) && biomes[id&0xff].temp < 0.1;
|
|
}
|
|
|
|
static inline int mcNextInt(Layer *layer, int mod)
|
|
{
|
|
int ret = (int)((layer->chunkSeed >> 24) % (int64_t)mod);
|
|
|
|
if (ret < 0)
|
|
{
|
|
ret += mod;
|
|
}
|
|
|
|
layer->chunkSeed *= layer->chunkSeed * 6364136223846793005LL + 1442695040888963407LL;
|
|
layer->chunkSeed += layer->worldSeed;
|
|
return ret;
|
|
}
|
|
|
|
static inline void setChunkSeed(Layer *layer, int64_t chunkX, int64_t chunkZ)
|
|
{
|
|
layer->chunkSeed = layer->worldSeed;
|
|
layer->chunkSeed *= layer->chunkSeed * 6364136223846793005LL + 1442695040888963407LL;
|
|
layer->chunkSeed += chunkX;
|
|
layer->chunkSeed *= layer->chunkSeed * 6364136223846793005LL + 1442695040888963407LL;
|
|
layer->chunkSeed += chunkZ;
|
|
layer->chunkSeed *= layer->chunkSeed * 6364136223846793005LL + 1442695040888963407LL;
|
|
layer->chunkSeed += chunkX;
|
|
layer->chunkSeed *= layer->chunkSeed * 6364136223846793005LL + 1442695040888963407LL;
|
|
layer->chunkSeed += chunkZ;
|
|
}
|
|
|
|
static inline void setBaseSeed(Layer *layer, int64_t seed)
|
|
{
|
|
layer->baseSeed = seed;
|
|
layer->baseSeed *= layer->baseSeed * 6364136223846793005LL + 1442695040888963407LL;
|
|
layer->baseSeed += seed;
|
|
layer->baseSeed *= layer->baseSeed * 6364136223846793005LL + 1442695040888963407LL;
|
|
layer->baseSeed += seed;
|
|
layer->baseSeed *= layer->baseSeed * 6364136223846793005LL + 1442695040888963407LL;
|
|
layer->baseSeed += seed;
|
|
|
|
layer->p = NULL;
|
|
layer->worldSeed = 0;
|
|
layer->chunkSeed = 0;
|
|
}
|
|
|
|
#if defined USE_SIMD && __AVX2__
|
|
static inline __m256i set8ChunkSeeds(int ws, __m256i xs, __m256i zs) {
|
|
__m256i out = _mm256_set1_epi32(ws);
|
|
__m256i mul = _mm256_set1_epi32(1284865837);
|
|
__m256i add = _mm256_set1_epi32(4150755663);
|
|
out = _mm256_add_epi32(xs, _mm256_mullo_epi32(out, _mm256_add_epi32(add, _mm256_mullo_epi32(out, mul))));
|
|
out = _mm256_add_epi32(zs, _mm256_mullo_epi32(out, _mm256_add_epi32(add, _mm256_mullo_epi32(out, mul))));
|
|
out = _mm256_add_epi32(xs, _mm256_mullo_epi32(out, _mm256_add_epi32(add, _mm256_mullo_epi32(out, mul))));
|
|
return _mm256_add_epi32(zs, _mm256_mullo_epi32(out, _mm256_add_epi32(add, _mm256_mullo_epi32(out, mul))));
|
|
}
|
|
|
|
static inline __m256i mc8NextInt(__m256i* cs, int ws, int mask) {
|
|
__m256i and = _mm256_set1_epi32(mask);
|
|
__m256i ret = _mm256_and_si256(and, _mm256_srli_epi32(*cs, 24));
|
|
*cs = _mm256_add_epi32(_mm256_set1_epi32(ws), _mm256_mullo_epi32(*cs, _mm256_add_epi32(_mm256_set1_epi32(4150755663), _mm256_mullo_epi32(*cs, _mm256_set1_epi32(1284865837)))));
|
|
return _mm256_add_epi32(ret, _mm256_and_si256(and, _mm256_cmpgt_epi32(_mm256_set1_epi32(0), ret)));;
|
|
}
|
|
|
|
static inline __m256i select8Random2(__m256i* cs, int ws, __m256i a1, __m256i a2) {
|
|
__m256i cmp = _mm256_cmpeq_epi32(_mm256_set1_epi32(0), mc8NextInt(cs, ws, 0x1));
|
|
return _mm256_or_si256(_mm256_and_si256(cmp, a1), _mm256_andnot_si256(cmp, a2));
|
|
}
|
|
|
|
static inline __m256i select8Random4(__m256i* cs, int ws, __m256i a1, __m256i a2, __m256i a3, __m256i a4) {
|
|
__m256i val = mc8NextInt(cs, ws, 0x3);
|
|
__m256i v2 = _mm256_set1_epi32(2);
|
|
__m256i cmp1 = _mm256_cmpeq_epi32(val, _mm256_set1_epi32(0));
|
|
__m256i cmp2 = _mm256_cmpeq_epi32(v2, val);
|
|
__m256i cmp3 = _mm256_cmpgt_epi32(v2, val);
|
|
return _mm256_or_si256(
|
|
_mm256_and_si256(cmp3, _mm256_or_si256(_mm256_and_si256(cmp1, a1), _mm256_andnot_si256(cmp1, a2))),
|
|
_mm256_andnot_si256(cmp3, _mm256_or_si256(_mm256_and_si256(cmp2, a3), _mm256_andnot_si256(cmp2, a4)))
|
|
);
|
|
}
|
|
|
|
static inline __m256i select8ModeOrRandom(__m256i* cs, int ws, __m256i a1, __m256i a2, __m256i a3, __m256i a4) {
|
|
__m256i cmp1 = _mm256_cmpeq_epi32(a1, a2);
|
|
__m256i cmp2 = _mm256_cmpeq_epi32(a1, a3);
|
|
__m256i cmp3 = _mm256_cmpeq_epi32(a1, a4);
|
|
__m256i cmp4 = _mm256_cmpeq_epi32(a2, a3);
|
|
__m256i cmp5 = _mm256_cmpeq_epi32(a2, a4);
|
|
__m256i cmp6 = _mm256_cmpeq_epi32(a3, a4);
|
|
__m256i isa1 = _mm256_or_si256(
|
|
_mm256_andnot_si256(cmp6, cmp1),
|
|
_mm256_or_si256 (
|
|
_mm256_andnot_si256(cmp5, cmp2),
|
|
_mm256_andnot_si256(cmp4, cmp3)
|
|
)
|
|
);
|
|
__m256i isa2 = _mm256_or_si256(
|
|
_mm256_andnot_si256(cmp3, cmp4),
|
|
_mm256_andnot_si256(cmp2, cmp5)
|
|
);
|
|
__m256i isa3 = _mm256_andnot_si256(cmp1, cmp6);
|
|
return _mm256_or_si256(
|
|
_mm256_andnot_si256(
|
|
_mm256_or_si256(
|
|
isa1,
|
|
_mm256_or_si256(isa2, isa3)
|
|
),
|
|
select8Random4(cs, ws, a1, a2, a3, a4)
|
|
),
|
|
_mm256_or_si256(
|
|
_mm256_and_si256(isa1, a1),
|
|
_mm256_or_si256(
|
|
_mm256_and_si256(isa2, a2),
|
|
_mm256_and_si256(isa3, a3)
|
|
)
|
|
)
|
|
);
|
|
}
|
|
#elif defined USE_SIMD && defined __SSE4_2__
|
|
static inline __m128i set4ChunkSeeds(int ws, __m128i xs, __m128i zs) {
|
|
__m128i out = _mm_set1_epi32(ws);
|
|
__m128i mul = _mm_set1_epi32(1284865837);
|
|
__m128i add = _mm_set1_epi32(4150755663);
|
|
out = _mm_add_epi32(xs, _mm_mullo_epi32(out, _mm_add_epi32(add, _mm_mullo_epi32(out, mul))));
|
|
out = _mm_add_epi32(zs, _mm_mullo_epi32(out, _mm_add_epi32(add, _mm_mullo_epi32(out, mul))));
|
|
out = _mm_add_epi32(xs, _mm_mullo_epi32(out, _mm_add_epi32(add, _mm_mullo_epi32(out, mul))));
|
|
return _mm_add_epi32(zs, _mm_mullo_epi32(out, _mm_add_epi32(add, _mm_mullo_epi32(out, mul))));
|
|
}
|
|
|
|
static inline __m128i mc4NextInt(__m128i* cs, int ws, int mask) {
|
|
__m128i and = _mm_set1_epi32(mask);
|
|
__m128i ret = _mm_and_si128(and, _mm_srli_epi32(*cs, 24));
|
|
*cs = _mm_add_epi32( _mm_set1_epi32(ws), _mm_mullo_epi32(*cs, _mm_add_epi32(_mm_set1_epi32(4150755663), _mm_mullo_epi32(*cs, _mm_set1_epi32(1284865837)))));
|
|
return _mm_add_epi32(ret, _mm_and_si128(and, _mm_cmplt_epi32(ret, _mm_set1_epi32(0))));;
|
|
}
|
|
|
|
static inline __m128i select4Random2(__m128i* cs, int ws, __m128i a1, __m128i a2) {
|
|
__m128i cmp = _mm_cmpeq_epi32(_mm_set1_epi32(0), mc4NextInt(cs, ws, 0x1));
|
|
return _mm_or_si128(_mm_and_si128(cmp, a1), _mm_andnot_si128(cmp, a2));
|
|
}
|
|
|
|
static inline __m128i select4Random4(__m128i* cs, int ws, __m128i a1, __m128i a2, __m128i a3, __m128i a4) {
|
|
__m128i val = mc4NextInt(cs, ws, 0x3);
|
|
__m128i v2 = _mm_set1_epi32(2);
|
|
__m128i cmp1 = _mm_cmpeq_epi32(val, _mm_set1_epi32(0));
|
|
__m128i cmp2 = _mm_cmpeq_epi32(val, v2);
|
|
__m128i cmp3 = _mm_cmplt_epi32(val, v2);
|
|
return _mm_or_si128(
|
|
_mm_and_si128(cmp3, _mm_or_si128(_mm_and_si128(cmp1, a1), _mm_andnot_si128(cmp1, a2))),
|
|
_mm_andnot_si128(cmp3, _mm_or_si128(_mm_and_si128(cmp2, a3), _mm_andnot_si128(cmp2, a4)))
|
|
);
|
|
}
|
|
|
|
static inline __m128i select4ModeOrRandom(__m128i* cs, int ws, __m128i a1, __m128i a2, __m128i a3, __m128i a4) {
|
|
//((a == b)&(c != d) | (a == c)&(b != d) | (a == d)&(b != c))&a | ((b == c)&(a != d) | (b == d)&(a != c))&b | ((c == d)&(a != b))&c
|
|
__m128i cmp1 = _mm_cmpeq_epi32(a1, a2);
|
|
__m128i cmp2 = _mm_cmpeq_epi32(a1, a3);
|
|
__m128i cmp3 = _mm_cmpeq_epi32(a1, a4);
|
|
__m128i cmp4 = _mm_cmpeq_epi32(a2, a3);
|
|
__m128i cmp5 = _mm_cmpeq_epi32(a2, a4);
|
|
__m128i cmp6 = _mm_cmpeq_epi32(a3, a4);
|
|
__m128i isa1 = _mm_or_si128(
|
|
_mm_andnot_si128(cmp6, cmp1),
|
|
_mm_or_si128 (
|
|
_mm_andnot_si128(cmp5, cmp2),
|
|
_mm_andnot_si128(cmp4, cmp3)
|
|
)
|
|
);
|
|
__m128i isa2 = _mm_or_si128(
|
|
_mm_andnot_si128(cmp3, cmp4),
|
|
_mm_andnot_si128(cmp2, cmp5)
|
|
);
|
|
__m128i isa3 = _mm_andnot_si128(cmp1, cmp6);
|
|
return _mm_or_si128(
|
|
_mm_andnot_si128(
|
|
_mm_or_si128(
|
|
isa1,
|
|
_mm_or_si128(isa2, isa3)
|
|
),
|
|
select4Random4(cs, ws, a1, a2, a3, a4)
|
|
),
|
|
_mm_or_si128(
|
|
_mm_and_si128(isa1, a1),
|
|
_mm_or_si128(
|
|
_mm_and_si128(isa2, a2),
|
|
_mm_and_si128(isa3, a3)
|
|
)
|
|
)
|
|
);
|
|
}
|
|
#else
|
|
static inline int selectRandom2(Layer *l, int a1, int a2)
|
|
{
|
|
int i = mcNextInt(l, 2);
|
|
return i == 0 ? a1 : a2;
|
|
}
|
|
|
|
static inline int selectRandom4(Layer *l, int a1, int a2, int a3, int a4)
|
|
{
|
|
int i = mcNextInt(l, 4);
|
|
return i == 0 ? a1 : i == 1 ? a2 : i == 2 ? a3 : a4;
|
|
}
|
|
|
|
static inline int selectModeOrRandom(Layer *l, int a1, int a2, int a3, int a4)
|
|
{
|
|
int rndarg = selectRandom4(l, a1, a2, a3, a4);
|
|
|
|
if(a2 == a3 && a3 == a4) return a2;
|
|
if(a1 == a2 && a1 == a3) return a1;
|
|
if(a1 == a2 && a1 == a4) return a1;
|
|
if(a1 == a3 && a1 == a4) return a1;
|
|
if(a1 == a2 && a3 != a4) return a1;
|
|
if(a1 == a3 && a2 != a4) return a1;
|
|
if(a1 == a4 && a2 != a3) return a1;
|
|
if(a2 == a3 && a1 != a4) return a2;
|
|
if(a2 == a4 && a1 != a3) return a2;
|
|
if(a3 == a4 && a1 != a2) return a3;
|
|
|
|
return rndarg;
|
|
}
|
|
#endif
|
|
|
|
// A null layer does nothing, and can be used to apply a layer to existing data.
|
|
void mapNull(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
|
|
void mapIsland(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapZoom(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapAddIsland(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapRemoveTooMuchOcean(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapAddSnow(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapCoolWarm(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapHeatIce(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapSpecial(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapAddMushroomIsland(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapDeepOcean(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapBiome(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapRiverInit(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapBiomeEdge(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapHills(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapRiver(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapSmooth(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapRareBiome(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapShore(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapRiverMix(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
|
|
// 1.13 layers
|
|
void mapHills113(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
void mapOceanTemp(Layer *l, int * __restrict out, int areaX, int areaZ, int areaWidth, int areaHeight);
|
|
void mapOceanMix(Layer *l, int * __restrict out, int areaX, int areaZ, int areaWidth, int areaHeight);
|
|
|
|
void mapVoronoiZoom(Layer *l, int * __restrict out, int x, int z, int w, int h);
|
|
|
|
#endif /* LAYER_H_ */
|