Merge branch 'master' into add-unit-tests-workflow

This commit is contained in:
Richard Beales 2023-04-12 18:14:37 +01:00 committed by GitHub
commit 364e2a4ba1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 235 additions and 24 deletions

View File

@ -12,6 +12,8 @@ USE_AZURE=False
OPENAI_AZURE_API_BASE=your-base-url-for-azure
OPENAI_AZURE_API_VERSION=api-version-for-azure
OPENAI_AZURE_DEPLOYMENT_ID=deployment-id-for-azure
OPENAI_AZURE_CHAT_DEPLOYMENT_ID=deployment-id-for-azure-chat
OPENAI_AZURE_EMBEDDINGS_DEPLOYMENT_ID=deployment-id-for-azure-embeddigs
IMAGE_PROVIDER=dalle
HUGGINGFACE_API_TOKEN=
USE_MAC_OS_TTS=False

3
.gitignore vendored
View File

@ -7,10 +7,11 @@ package-lock.json
auto_gpt_workspace/*
*.mpeg
.env
venv/*
*venv/*
outputs/*
ai_settings.yaml
.vscode
.idea/*
auto-gpt.json
log.txt

View File

@ -6,7 +6,7 @@ To contribute to this GitHub project, you can follow these steps:
2. Clone the repository to your local machine using the following command:
```
git clone https://github.com/Torantulino/Auto-GPT
git clone https://github.com/<YOUR-GITHUB-USERNAME>/Auto-GPT
```
3. Create a new branch for your changes using the following command:

View File

@ -59,7 +59,7 @@ Your support is greatly appreciated
## 📋 Requirements
- [Python 3.8 or later](https://www.tutorialspoint.com/how-to-install-python-in-windows)
- OpenAI API key
- [OpenAI API key](https://platform.openai.com/account/api-keys)
- [PINECONE API key](https://www.pinecone.io/)
Optional:
@ -96,10 +96,9 @@ pip install -r requirements.txt
```
4. Rename `.env.template` to `.env` and fill in your `OPENAI_API_KEY`. If you plan to use Speech Mode, fill in your `ELEVEN_LABS_API_KEY` as well.
- Obtain your OpenAI API key from: https://platform.openai.com/account/api-keys.
- Obtain your ElevenLabs API key from: https://elevenlabs.io. You can view your xi-api-key using the "Profile" tab on the website.
- If you want to use GPT on an Azure instance, set `USE_AZURE` to `True` and provide the `OPENAI_AZURE_API_BASE`, `OPENAI_AZURE_API_VERSION` and `OPENAI_AZURE_DEPLOYMENT_ID` values as explained here: https://pypi.org/project/openai/ in the `Microsoft Azure Endpoints` section
- Obtain your OpenAI API key from: https://platform.openai.com/account/api-keys.
- Obtain your ElevenLabs API key from: https://elevenlabs.io. You can view your xi-api-key using the "Profile" tab on the website.
- If you want to use GPT on an Azure instance, set `USE_AZURE` to `True` and provide the `OPENAI_AZURE_API_BASE`, `OPENAI_AZURE_API_VERSION` and `OPENAI_AZURE_DEPLOYMENT_ID` values as explained here: https://pypi.org/project/openai/ in the `Microsoft Azure Endpoints` section. Additionally you need separate deployments for both embeddings and chat. Add their ID values to `OPENAI_AZURE_CHAT_DEPLOYMENT_ID` and `OPENAI_AZURE_EMBEDDINGS_DEPLOYMENT_ID` respectively
## 🔧 Usage

View File

@ -13,7 +13,7 @@ def create_agent(task, prompt, model):
messages = [{"role": "user", "content": prompt}, ]
# Start GTP3 instance
# Start GPT instance
agent_reply = create_chat_completion(
model=model,
messages=messages,
@ -41,7 +41,7 @@ def message_agent(key, message):
# Add user message to message history before sending to agent
messages.append({"role": "user", "content": message})
# Start GTP3 instance
# Start GPT instance
agent_reply = create_chat_completion(
model=model,
messages=messages,

View File

@ -2,9 +2,31 @@ import requests
from bs4 import BeautifulSoup
from config import Config
from llm_utils import create_chat_completion
from urllib.parse import urlparse, urljoin
cfg = Config()
# Function to check if the URL is valid
def is_valid_url(url):
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except ValueError:
return False
# Function to sanitize the URL
def sanitize_url(url):
return urljoin(url, urlparse(url).path)
# Function to make a request with a specified timeout and handle exceptions
def make_request(url, timeout=10):
try:
response = requests.get(url, headers=cfg.user_agent_header, timeout=timeout)
response.raise_for_status()
return response
except requests.exceptions.RequestException as e:
return "Error: " + str(e)
# Define and check for local file address prefixes
def check_local_file_access(url):
local_prefixes = ['file:///', 'file://localhost', 'http://localhost', 'https://localhost']
@ -12,7 +34,7 @@ def check_local_file_access(url):
def scrape_text(url):
"""Scrape text from a webpage"""
# Most basic check if the URL is valid:
# Basic check if the URL is valid
if not url.startswith('http'):
return "Error: Invalid URL"
@ -20,14 +42,21 @@ def scrape_text(url):
if check_local_file_access(url):
return "Error: Access to local files is restricted"
try:
response = requests.get(url, headers=cfg.user_agent_header)
except requests.exceptions.RequestException as e:
return "Error: " + str(e)
# Validate the input URL
if not is_valid_url(url):
# Sanitize the input URL
sanitized_url = sanitize_url(url)
# Check if the response contains an HTTP error
if response.status_code >= 400:
return "Error: HTTP " + str(response.status_code) + " error"
# Make the request with a timeout and handle exceptions
response = make_request(sanitized_url)
if isinstance(response, str):
return response
else:
# Sanitize the input URL
sanitized_url = sanitize_url(url)
response = requests.get(sanitized_url, headers=cfg.user_agent_header)
soup = BeautifulSoup(response.text, "html.parser")

View File

@ -49,6 +49,8 @@ class Config(metaclass=Singleton):
self.openai_api_base = os.getenv("OPENAI_AZURE_API_BASE")
self.openai_api_version = os.getenv("OPENAI_AZURE_API_VERSION")
self.openai_deployment_id = os.getenv("OPENAI_AZURE_DEPLOYMENT_ID")
self.azure_chat_deployment_id = os.getenv("OPENAI_AZURE_CHAT_DEPLOYMENT_ID")
self.azure_embeddigs_deployment_id = os.getenv("OPENAI_AZURE_EMBEDDINGS_DEPLOYMENT_ID")
openai.api_type = "azure"
openai.api_base = self.openai_api_base
openai.api_version = self.openai_api_version

View File

@ -26,7 +26,7 @@ JSON_SCHEMA = """
"""
def fix_and_parse_json(
def fix_and_parse_json(
json_str: str,
try_to_fix_with_gpt: bool = True
) -> Union[str, Dict[Any, Any]]:
@ -35,8 +35,8 @@ def fix_and_parse_json(
json_str = json_str.replace('\t', '')
return json.loads(json_str)
except json.JSONDecodeError as _: # noqa: F841
json_str = correct_json(json_str)
try:
json_str = correct_json(json_str)
return json.loads(json_str)
except json.JSONDecodeError as _: # noqa: F841
pass
@ -53,6 +53,7 @@ def fix_and_parse_json(
last_brace_index = json_str.rindex("}")
json_str = json_str[:last_brace_index+1]
return json.loads(json_str)
# Can throw a ValueError if there is no "{" or "}" in the json_str
except (json.JSONDecodeError, ValueError) as e: # noqa: F841
if try_to_fix_with_gpt:
print("Warning: Failed to parse AI output, attempting to fix."

View File

@ -9,7 +9,7 @@ def create_chat_completion(messages, model=None, temperature=None, max_tokens=No
"""Create a chat completion using the OpenAI API"""
if cfg.use_azure:
response = openai.ChatCompletion.create(
deployment_id=cfg.openai_deployment_id,
deployment_id=cfg.azure_chat_deployment_id,
model=model,
messages=messages,
temperature=temperature,

View File

@ -266,6 +266,7 @@ def prompt_user():
def parse_arguments():
"""Parses the arguments passed to the script"""
global cfg
cfg.set_debug_mode(False)
cfg.set_continuous_mode(False)
cfg.set_speak_mode(False)
@ -274,6 +275,7 @@ def parse_arguments():
parser.add_argument('--speak', action='store_true', help='Enable Speak Mode')
parser.add_argument('--debug', action='store_true', help='Enable Debug Mode')
parser.add_argument('--gpt3only', action='store_true', help='Enable GPT3.5 Only Mode')
parser.add_argument('--gpt4only', action='store_true', help='Enable GPT4 Only Mode')
args = parser.parse_args()
if args.continuous:
@ -291,7 +293,14 @@ def parse_arguments():
if args.gpt3only:
print_to_console("GPT3.5 Only Mode: ", Fore.GREEN, "ENABLED")
cfg.set_smart_llm_model(cfg.fast_llm_model)
if args.gpt4only:
print_to_console("GPT4 Only Mode: ", Fore.GREEN, "ENABLED")
cfg.set_fast_llm_model(cfg.smart_llm_model)
if args.debug:
print_to_console("Debug Mode: ", Fore.GREEN, "ENABLED")
cfg.set_debug_mode(True)
# TODO: fill in llm values here
@ -383,7 +392,7 @@ while True:
f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL} ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}")
# Execute command
if command_name.lower().startswith( "error" ):
if command_name is not None and command_name.lower().startswith( "error" ):
result = f"Command {command_name} threw the following error: " + arguments
elif command_name == "human_feedback":
result = f"Human feedback: {user_input}"

View File

@ -1,12 +1,16 @@
"""Base class for memory providers."""
import abc
from config import AbstractSingleton
from config import AbstractSingleton, Config
import openai
cfg = Config()
def get_ada_embedding(text):
text = text.replace("\n", " ")
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
if cfg.use_azure:
return openai.Embedding.create(input=[text], engine=cfg.azure_embeddigs_deployment_id, model="text-embedding-ada-002")["data"][0]["embedding"]
else:
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
class MemoryProviderSingleton(AbstractSingleton):

View File

@ -54,8 +54,8 @@ class LocalCache(MemoryProviderSingleton):
vector = vector[np.newaxis, :]
self.data.embeddings = np.concatenate(
[
vector,
self.data.embeddings,
vector,
],
axis=0,
)

View File

@ -0,0 +1,49 @@
import unittest
import random
import string
import sys
from pathlib import Path
# Add the parent directory of the 'scripts' folder to the Python path
sys.path.append(str(Path(__file__).resolve().parent.parent.parent / 'scripts'))
from config import Config
from memory.local import LocalCache
class TestLocalCache(unittest.TestCase):
def random_string(self, length):
return ''.join(random.choice(string.ascii_letters) for _ in range(length))
def setUp(self):
cfg = cfg = Config()
self.cache = LocalCache(cfg)
self.cache.clear()
# Add example texts to the cache
self.example_texts = [
'The quick brown fox jumps over the lazy dog',
'I love machine learning and natural language processing',
'The cake is a lie, but the pie is always true',
'ChatGPT is an advanced AI model for conversation'
]
for text in self.example_texts:
self.cache.add(text)
# Add some random strings to test noise
for _ in range(5):
self.cache.add(self.random_string(10))
def test_get_relevant(self):
query = "I'm interested in artificial intelligence and NLP"
k = 3
relevant_texts = self.cache.get_relevant(query, k)
print(f"Top {k} relevant texts for the query '{query}':")
for i, text in enumerate(relevant_texts, start=1):
print(f"{i}. {text}")
self.assertEqual(len(relevant_texts), k)
self.assertIn(self.example_texts[1], relevant_texts)
if __name__ == '__main__':
unittest.main()

115
tests/unit/json_tests.py Normal file
View File

@ -0,0 +1,115 @@
import unittest
import os
import sys
# Probably a better way:
sys.path.append(os.path.abspath('../scripts'))
from json_parser import fix_and_parse_json
class TestParseJson(unittest.TestCase):
def test_valid_json(self):
# Test that a valid JSON string is parsed correctly
json_str = '{"name": "John", "age": 30, "city": "New York"}'
obj = fix_and_parse_json(json_str)
self.assertEqual(obj, {"name": "John", "age": 30, "city": "New York"})
def test_invalid_json_minor(self):
# Test that an invalid JSON string can be fixed with gpt
json_str = '{"name": "John", "age": 30, "city": "New York",}'
self.assertEqual(fix_and_parse_json(json_str, try_to_fix_with_gpt=False), {"name": "John", "age": 30, "city": "New York"})
def test_invalid_json_major_with_gpt(self):
# Test that an invalid JSON string raises an error when try_to_fix_with_gpt is False
json_str = 'BEGIN: "name": "John" - "age": 30 - "city": "New York" :END'
self.assertEqual(fix_and_parse_json(json_str, try_to_fix_with_gpt=True), {"name": "John", "age": 30, "city": "New York"})
def test_invalid_json_major_without_gpt(self):
# Test that a REALLY invalid JSON string raises an error when try_to_fix_with_gpt is False
json_str = 'BEGIN: "name": "John" - "age": 30 - "city": "New York" :END'
# Assert that this raises an exception:
with self.assertRaises(Exception):
fix_and_parse_json(json_str, try_to_fix_with_gpt=False)
def test_invalid_json_leading_sentence_with_gpt(self):
# Test that a REALLY invalid JSON string raises an error when try_to_fix_with_gpt is False
json_str = """I suggest we start by browsing the repository to find any issues that we can fix.
{
"command": {
"name": "browse_website",
"args":{
"url": "https://github.com/Torantulino/Auto-GPT"
}
},
"thoughts":
{
"text": "I suggest we start browsing the repository to find any issues that we can fix.",
"reasoning": "Browsing the repository will give us an idea of the current state of the codebase and identify any issues that we can address to improve the repo.",
"plan": "- Look through the repository to find any issues.\n- Investigate any issues to determine what needs to be fixed\n- Identify possible solutions to fix the issues\n- Open Pull Requests with fixes",
"criticism": "I should be careful while browsing so as not to accidentally introduce any new bugs or issues.",
"speak": "I will start browsing the repository to find any issues we can fix."
}
}"""
good_obj = {
"command": {
"name": "browse_website",
"args":{
"url": "https://github.com/Torantulino/Auto-GPT"
}
},
"thoughts":
{
"text": "I suggest we start browsing the repository to find any issues that we can fix.",
"reasoning": "Browsing the repository will give us an idea of the current state of the codebase and identify any issues that we can address to improve the repo.",
"plan": "- Look through the repository to find any issues.\n- Investigate any issues to determine what needs to be fixed\n- Identify possible solutions to fix the issues\n- Open Pull Requests with fixes",
"criticism": "I should be careful while browsing so as not to accidentally introduce any new bugs or issues.",
"speak": "I will start browsing the repository to find any issues we can fix."
}
}
# Assert that this raises an exception:
self.assertEqual(fix_and_parse_json(json_str, try_to_fix_with_gpt=False), good_obj)
def test_invalid_json_leading_sentence_with_gpt(self):
# Test that a REALLY invalid JSON string raises an error when try_to_fix_with_gpt is False
json_str = """I will first need to browse the repository (https://github.com/Torantulino/Auto-GPT) and identify any potential bugs that need fixing. I will use the "browse_website" command for this.
{
"command": {
"name": "browse_website",
"args":{
"url": "https://github.com/Torantulino/Auto-GPT"
}
},
"thoughts":
{
"text": "Browsing the repository to identify potential bugs",
"reasoning": "Before fixing bugs, I need to identify what needs fixing. I will use the 'browse_website' command to analyze the repository.",
"plan": "- Analyze the repository for potential bugs and areas of improvement",
"criticism": "I need to ensure I am thorough and pay attention to detail while browsing the repository.",
"speak": "I am browsing the repository to identify potential bugs."
}
}"""
good_obj = {
"command": {
"name": "browse_website",
"args":{
"url": "https://github.com/Torantulino/Auto-GPT"
}
},
"thoughts":
{
"text": "Browsing the repository to identify potential bugs",
"reasoning": "Before fixing bugs, I need to identify what needs fixing. I will use the 'browse_website' command to analyze the repository.",
"plan": "- Analyze the repository for potential bugs and areas of improvement",
"criticism": "I need to ensure I am thorough and pay attention to detail while browsing the repository.",
"speak": "I am browsing the repository to identify potential bugs."
}
}
# Assert that this raises an exception:
self.assertEqual(fix_and_parse_json(json_str, try_to_fix_with_gpt=False), good_obj)
if __name__ == '__main__':
unittest.main()