mirror of
https://github.com/Significant-Gravitas/Auto-GPT.git
synced 2025-01-08 11:57:32 +08:00
Merge branch 'master' into add-unit-tests-workflow
This commit is contained in:
commit
364e2a4ba1
@ -12,6 +12,8 @@ USE_AZURE=False
|
||||
OPENAI_AZURE_API_BASE=your-base-url-for-azure
|
||||
OPENAI_AZURE_API_VERSION=api-version-for-azure
|
||||
OPENAI_AZURE_DEPLOYMENT_ID=deployment-id-for-azure
|
||||
OPENAI_AZURE_CHAT_DEPLOYMENT_ID=deployment-id-for-azure-chat
|
||||
OPENAI_AZURE_EMBEDDINGS_DEPLOYMENT_ID=deployment-id-for-azure-embeddigs
|
||||
IMAGE_PROVIDER=dalle
|
||||
HUGGINGFACE_API_TOKEN=
|
||||
USE_MAC_OS_TTS=False
|
||||
|
3
.gitignore
vendored
3
.gitignore
vendored
@ -7,10 +7,11 @@ package-lock.json
|
||||
auto_gpt_workspace/*
|
||||
*.mpeg
|
||||
.env
|
||||
venv/*
|
||||
*venv/*
|
||||
outputs/*
|
||||
ai_settings.yaml
|
||||
.vscode
|
||||
.idea/*
|
||||
auto-gpt.json
|
||||
log.txt
|
||||
|
||||
|
@ -6,7 +6,7 @@ To contribute to this GitHub project, you can follow these steps:
|
||||
2. Clone the repository to your local machine using the following command:
|
||||
|
||||
```
|
||||
git clone https://github.com/Torantulino/Auto-GPT
|
||||
git clone https://github.com/<YOUR-GITHUB-USERNAME>/Auto-GPT
|
||||
```
|
||||
3. Create a new branch for your changes using the following command:
|
||||
|
||||
|
@ -59,7 +59,7 @@ Your support is greatly appreciated
|
||||
## 📋 Requirements
|
||||
|
||||
- [Python 3.8 or later](https://www.tutorialspoint.com/how-to-install-python-in-windows)
|
||||
- OpenAI API key
|
||||
- [OpenAI API key](https://platform.openai.com/account/api-keys)
|
||||
- [PINECONE API key](https://www.pinecone.io/)
|
||||
|
||||
Optional:
|
||||
@ -96,10 +96,9 @@ pip install -r requirements.txt
|
||||
```
|
||||
|
||||
4. Rename `.env.template` to `.env` and fill in your `OPENAI_API_KEY`. If you plan to use Speech Mode, fill in your `ELEVEN_LABS_API_KEY` as well.
|
||||
|
||||
- Obtain your OpenAI API key from: https://platform.openai.com/account/api-keys.
|
||||
- Obtain your ElevenLabs API key from: https://elevenlabs.io. You can view your xi-api-key using the "Profile" tab on the website.
|
||||
- If you want to use GPT on an Azure instance, set `USE_AZURE` to `True` and provide the `OPENAI_AZURE_API_BASE`, `OPENAI_AZURE_API_VERSION` and `OPENAI_AZURE_DEPLOYMENT_ID` values as explained here: https://pypi.org/project/openai/ in the `Microsoft Azure Endpoints` section
|
||||
- Obtain your OpenAI API key from: https://platform.openai.com/account/api-keys.
|
||||
- Obtain your ElevenLabs API key from: https://elevenlabs.io. You can view your xi-api-key using the "Profile" tab on the website.
|
||||
- If you want to use GPT on an Azure instance, set `USE_AZURE` to `True` and provide the `OPENAI_AZURE_API_BASE`, `OPENAI_AZURE_API_VERSION` and `OPENAI_AZURE_DEPLOYMENT_ID` values as explained here: https://pypi.org/project/openai/ in the `Microsoft Azure Endpoints` section. Additionally you need separate deployments for both embeddings and chat. Add their ID values to `OPENAI_AZURE_CHAT_DEPLOYMENT_ID` and `OPENAI_AZURE_EMBEDDINGS_DEPLOYMENT_ID` respectively
|
||||
|
||||
## 🔧 Usage
|
||||
|
||||
|
@ -13,7 +13,7 @@ def create_agent(task, prompt, model):
|
||||
|
||||
messages = [{"role": "user", "content": prompt}, ]
|
||||
|
||||
# Start GTP3 instance
|
||||
# Start GPT instance
|
||||
agent_reply = create_chat_completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
@ -41,7 +41,7 @@ def message_agent(key, message):
|
||||
# Add user message to message history before sending to agent
|
||||
messages.append({"role": "user", "content": message})
|
||||
|
||||
# Start GTP3 instance
|
||||
# Start GPT instance
|
||||
agent_reply = create_chat_completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
|
@ -2,9 +2,31 @@ import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from config import Config
|
||||
from llm_utils import create_chat_completion
|
||||
from urllib.parse import urlparse, urljoin
|
||||
|
||||
cfg = Config()
|
||||
|
||||
# Function to check if the URL is valid
|
||||
def is_valid_url(url):
|
||||
try:
|
||||
result = urlparse(url)
|
||||
return all([result.scheme, result.netloc])
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
# Function to sanitize the URL
|
||||
def sanitize_url(url):
|
||||
return urljoin(url, urlparse(url).path)
|
||||
|
||||
# Function to make a request with a specified timeout and handle exceptions
|
||||
def make_request(url, timeout=10):
|
||||
try:
|
||||
response = requests.get(url, headers=cfg.user_agent_header, timeout=timeout)
|
||||
response.raise_for_status()
|
||||
return response
|
||||
except requests.exceptions.RequestException as e:
|
||||
return "Error: " + str(e)
|
||||
|
||||
# Define and check for local file address prefixes
|
||||
def check_local_file_access(url):
|
||||
local_prefixes = ['file:///', 'file://localhost', 'http://localhost', 'https://localhost']
|
||||
@ -12,7 +34,7 @@ def check_local_file_access(url):
|
||||
|
||||
def scrape_text(url):
|
||||
"""Scrape text from a webpage"""
|
||||
# Most basic check if the URL is valid:
|
||||
# Basic check if the URL is valid
|
||||
if not url.startswith('http'):
|
||||
return "Error: Invalid URL"
|
||||
|
||||
@ -20,14 +42,21 @@ def scrape_text(url):
|
||||
if check_local_file_access(url):
|
||||
return "Error: Access to local files is restricted"
|
||||
|
||||
try:
|
||||
response = requests.get(url, headers=cfg.user_agent_header)
|
||||
except requests.exceptions.RequestException as e:
|
||||
return "Error: " + str(e)
|
||||
# Validate the input URL
|
||||
if not is_valid_url(url):
|
||||
# Sanitize the input URL
|
||||
sanitized_url = sanitize_url(url)
|
||||
|
||||
# Check if the response contains an HTTP error
|
||||
if response.status_code >= 400:
|
||||
return "Error: HTTP " + str(response.status_code) + " error"
|
||||
# Make the request with a timeout and handle exceptions
|
||||
response = make_request(sanitized_url)
|
||||
|
||||
if isinstance(response, str):
|
||||
return response
|
||||
else:
|
||||
# Sanitize the input URL
|
||||
sanitized_url = sanitize_url(url)
|
||||
|
||||
response = requests.get(sanitized_url, headers=cfg.user_agent_header)
|
||||
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
|
||||
|
@ -49,6 +49,8 @@ class Config(metaclass=Singleton):
|
||||
self.openai_api_base = os.getenv("OPENAI_AZURE_API_BASE")
|
||||
self.openai_api_version = os.getenv("OPENAI_AZURE_API_VERSION")
|
||||
self.openai_deployment_id = os.getenv("OPENAI_AZURE_DEPLOYMENT_ID")
|
||||
self.azure_chat_deployment_id = os.getenv("OPENAI_AZURE_CHAT_DEPLOYMENT_ID")
|
||||
self.azure_embeddigs_deployment_id = os.getenv("OPENAI_AZURE_EMBEDDINGS_DEPLOYMENT_ID")
|
||||
openai.api_type = "azure"
|
||||
openai.api_base = self.openai_api_base
|
||||
openai.api_version = self.openai_api_version
|
||||
|
@ -26,7 +26,7 @@ JSON_SCHEMA = """
|
||||
"""
|
||||
|
||||
|
||||
def fix_and_parse_json(
|
||||
def fix_and_parse_json(
|
||||
json_str: str,
|
||||
try_to_fix_with_gpt: bool = True
|
||||
) -> Union[str, Dict[Any, Any]]:
|
||||
@ -35,8 +35,8 @@ def fix_and_parse_json(
|
||||
json_str = json_str.replace('\t', '')
|
||||
return json.loads(json_str)
|
||||
except json.JSONDecodeError as _: # noqa: F841
|
||||
json_str = correct_json(json_str)
|
||||
try:
|
||||
json_str = correct_json(json_str)
|
||||
return json.loads(json_str)
|
||||
except json.JSONDecodeError as _: # noqa: F841
|
||||
pass
|
||||
@ -53,6 +53,7 @@ def fix_and_parse_json(
|
||||
last_brace_index = json_str.rindex("}")
|
||||
json_str = json_str[:last_brace_index+1]
|
||||
return json.loads(json_str)
|
||||
# Can throw a ValueError if there is no "{" or "}" in the json_str
|
||||
except (json.JSONDecodeError, ValueError) as e: # noqa: F841
|
||||
if try_to_fix_with_gpt:
|
||||
print("Warning: Failed to parse AI output, attempting to fix."
|
||||
|
@ -9,7 +9,7 @@ def create_chat_completion(messages, model=None, temperature=None, max_tokens=No
|
||||
"""Create a chat completion using the OpenAI API"""
|
||||
if cfg.use_azure:
|
||||
response = openai.ChatCompletion.create(
|
||||
deployment_id=cfg.openai_deployment_id,
|
||||
deployment_id=cfg.azure_chat_deployment_id,
|
||||
model=model,
|
||||
messages=messages,
|
||||
temperature=temperature,
|
||||
|
@ -266,6 +266,7 @@ def prompt_user():
|
||||
def parse_arguments():
|
||||
"""Parses the arguments passed to the script"""
|
||||
global cfg
|
||||
cfg.set_debug_mode(False)
|
||||
cfg.set_continuous_mode(False)
|
||||
cfg.set_speak_mode(False)
|
||||
|
||||
@ -274,6 +275,7 @@ def parse_arguments():
|
||||
parser.add_argument('--speak', action='store_true', help='Enable Speak Mode')
|
||||
parser.add_argument('--debug', action='store_true', help='Enable Debug Mode')
|
||||
parser.add_argument('--gpt3only', action='store_true', help='Enable GPT3.5 Only Mode')
|
||||
parser.add_argument('--gpt4only', action='store_true', help='Enable GPT4 Only Mode')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.continuous:
|
||||
@ -291,7 +293,14 @@ def parse_arguments():
|
||||
if args.gpt3only:
|
||||
print_to_console("GPT3.5 Only Mode: ", Fore.GREEN, "ENABLED")
|
||||
cfg.set_smart_llm_model(cfg.fast_llm_model)
|
||||
|
||||
if args.gpt4only:
|
||||
print_to_console("GPT4 Only Mode: ", Fore.GREEN, "ENABLED")
|
||||
cfg.set_fast_llm_model(cfg.smart_llm_model)
|
||||
|
||||
if args.debug:
|
||||
print_to_console("Debug Mode: ", Fore.GREEN, "ENABLED")
|
||||
cfg.set_debug_mode(True)
|
||||
|
||||
|
||||
# TODO: fill in llm values here
|
||||
@ -383,7 +392,7 @@ while True:
|
||||
f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL} ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}")
|
||||
|
||||
# Execute command
|
||||
if command_name.lower().startswith( "error" ):
|
||||
if command_name is not None and command_name.lower().startswith( "error" ):
|
||||
result = f"Command {command_name} threw the following error: " + arguments
|
||||
elif command_name == "human_feedback":
|
||||
result = f"Human feedback: {user_input}"
|
||||
|
@ -1,12 +1,16 @@
|
||||
"""Base class for memory providers."""
|
||||
import abc
|
||||
from config import AbstractSingleton
|
||||
from config import AbstractSingleton, Config
|
||||
import openai
|
||||
cfg = Config()
|
||||
|
||||
|
||||
def get_ada_embedding(text):
|
||||
text = text.replace("\n", " ")
|
||||
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
|
||||
if cfg.use_azure:
|
||||
return openai.Embedding.create(input=[text], engine=cfg.azure_embeddigs_deployment_id, model="text-embedding-ada-002")["data"][0]["embedding"]
|
||||
else:
|
||||
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
|
||||
|
||||
|
||||
class MemoryProviderSingleton(AbstractSingleton):
|
||||
|
@ -54,8 +54,8 @@ class LocalCache(MemoryProviderSingleton):
|
||||
vector = vector[np.newaxis, :]
|
||||
self.data.embeddings = np.concatenate(
|
||||
[
|
||||
vector,
|
||||
self.data.embeddings,
|
||||
vector,
|
||||
],
|
||||
axis=0,
|
||||
)
|
||||
|
49
tests/integration/memory_tests.py
Normal file
49
tests/integration/memory_tests.py
Normal file
@ -0,0 +1,49 @@
|
||||
import unittest
|
||||
import random
|
||||
import string
|
||||
import sys
|
||||
from pathlib import Path
|
||||
# Add the parent directory of the 'scripts' folder to the Python path
|
||||
sys.path.append(str(Path(__file__).resolve().parent.parent.parent / 'scripts'))
|
||||
from config import Config
|
||||
from memory.local import LocalCache
|
||||
|
||||
class TestLocalCache(unittest.TestCase):
|
||||
|
||||
def random_string(self, length):
|
||||
return ''.join(random.choice(string.ascii_letters) for _ in range(length))
|
||||
|
||||
def setUp(self):
|
||||
cfg = cfg = Config()
|
||||
self.cache = LocalCache(cfg)
|
||||
self.cache.clear()
|
||||
|
||||
# Add example texts to the cache
|
||||
self.example_texts = [
|
||||
'The quick brown fox jumps over the lazy dog',
|
||||
'I love machine learning and natural language processing',
|
||||
'The cake is a lie, but the pie is always true',
|
||||
'ChatGPT is an advanced AI model for conversation'
|
||||
]
|
||||
|
||||
for text in self.example_texts:
|
||||
self.cache.add(text)
|
||||
|
||||
# Add some random strings to test noise
|
||||
for _ in range(5):
|
||||
self.cache.add(self.random_string(10))
|
||||
|
||||
def test_get_relevant(self):
|
||||
query = "I'm interested in artificial intelligence and NLP"
|
||||
k = 3
|
||||
relevant_texts = self.cache.get_relevant(query, k)
|
||||
|
||||
print(f"Top {k} relevant texts for the query '{query}':")
|
||||
for i, text in enumerate(relevant_texts, start=1):
|
||||
print(f"{i}. {text}")
|
||||
|
||||
self.assertEqual(len(relevant_texts), k)
|
||||
self.assertIn(self.example_texts[1], relevant_texts)
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
115
tests/unit/json_tests.py
Normal file
115
tests/unit/json_tests.py
Normal file
@ -0,0 +1,115 @@
|
||||
import unittest
|
||||
import os
|
||||
import sys
|
||||
# Probably a better way:
|
||||
sys.path.append(os.path.abspath('../scripts'))
|
||||
from json_parser import fix_and_parse_json
|
||||
|
||||
class TestParseJson(unittest.TestCase):
|
||||
def test_valid_json(self):
|
||||
# Test that a valid JSON string is parsed correctly
|
||||
json_str = '{"name": "John", "age": 30, "city": "New York"}'
|
||||
obj = fix_and_parse_json(json_str)
|
||||
self.assertEqual(obj, {"name": "John", "age": 30, "city": "New York"})
|
||||
|
||||
def test_invalid_json_minor(self):
|
||||
# Test that an invalid JSON string can be fixed with gpt
|
||||
json_str = '{"name": "John", "age": 30, "city": "New York",}'
|
||||
self.assertEqual(fix_and_parse_json(json_str, try_to_fix_with_gpt=False), {"name": "John", "age": 30, "city": "New York"})
|
||||
|
||||
def test_invalid_json_major_with_gpt(self):
|
||||
# Test that an invalid JSON string raises an error when try_to_fix_with_gpt is False
|
||||
json_str = 'BEGIN: "name": "John" - "age": 30 - "city": "New York" :END'
|
||||
self.assertEqual(fix_and_parse_json(json_str, try_to_fix_with_gpt=True), {"name": "John", "age": 30, "city": "New York"})
|
||||
|
||||
def test_invalid_json_major_without_gpt(self):
|
||||
# Test that a REALLY invalid JSON string raises an error when try_to_fix_with_gpt is False
|
||||
json_str = 'BEGIN: "name": "John" - "age": 30 - "city": "New York" :END'
|
||||
# Assert that this raises an exception:
|
||||
with self.assertRaises(Exception):
|
||||
fix_and_parse_json(json_str, try_to_fix_with_gpt=False)
|
||||
|
||||
def test_invalid_json_leading_sentence_with_gpt(self):
|
||||
# Test that a REALLY invalid JSON string raises an error when try_to_fix_with_gpt is False
|
||||
json_str = """I suggest we start by browsing the repository to find any issues that we can fix.
|
||||
|
||||
{
|
||||
"command": {
|
||||
"name": "browse_website",
|
||||
"args":{
|
||||
"url": "https://github.com/Torantulino/Auto-GPT"
|
||||
}
|
||||
},
|
||||
"thoughts":
|
||||
{
|
||||
"text": "I suggest we start browsing the repository to find any issues that we can fix.",
|
||||
"reasoning": "Browsing the repository will give us an idea of the current state of the codebase and identify any issues that we can address to improve the repo.",
|
||||
"plan": "- Look through the repository to find any issues.\n- Investigate any issues to determine what needs to be fixed\n- Identify possible solutions to fix the issues\n- Open Pull Requests with fixes",
|
||||
"criticism": "I should be careful while browsing so as not to accidentally introduce any new bugs or issues.",
|
||||
"speak": "I will start browsing the repository to find any issues we can fix."
|
||||
}
|
||||
}"""
|
||||
good_obj = {
|
||||
"command": {
|
||||
"name": "browse_website",
|
||||
"args":{
|
||||
"url": "https://github.com/Torantulino/Auto-GPT"
|
||||
}
|
||||
},
|
||||
"thoughts":
|
||||
{
|
||||
"text": "I suggest we start browsing the repository to find any issues that we can fix.",
|
||||
"reasoning": "Browsing the repository will give us an idea of the current state of the codebase and identify any issues that we can address to improve the repo.",
|
||||
"plan": "- Look through the repository to find any issues.\n- Investigate any issues to determine what needs to be fixed\n- Identify possible solutions to fix the issues\n- Open Pull Requests with fixes",
|
||||
"criticism": "I should be careful while browsing so as not to accidentally introduce any new bugs or issues.",
|
||||
"speak": "I will start browsing the repository to find any issues we can fix."
|
||||
}
|
||||
}
|
||||
# Assert that this raises an exception:
|
||||
self.assertEqual(fix_and_parse_json(json_str, try_to_fix_with_gpt=False), good_obj)
|
||||
|
||||
|
||||
|
||||
def test_invalid_json_leading_sentence_with_gpt(self):
|
||||
# Test that a REALLY invalid JSON string raises an error when try_to_fix_with_gpt is False
|
||||
json_str = """I will first need to browse the repository (https://github.com/Torantulino/Auto-GPT) and identify any potential bugs that need fixing. I will use the "browse_website" command for this.
|
||||
|
||||
{
|
||||
"command": {
|
||||
"name": "browse_website",
|
||||
"args":{
|
||||
"url": "https://github.com/Torantulino/Auto-GPT"
|
||||
}
|
||||
},
|
||||
"thoughts":
|
||||
{
|
||||
"text": "Browsing the repository to identify potential bugs",
|
||||
"reasoning": "Before fixing bugs, I need to identify what needs fixing. I will use the 'browse_website' command to analyze the repository.",
|
||||
"plan": "- Analyze the repository for potential bugs and areas of improvement",
|
||||
"criticism": "I need to ensure I am thorough and pay attention to detail while browsing the repository.",
|
||||
"speak": "I am browsing the repository to identify potential bugs."
|
||||
}
|
||||
}"""
|
||||
good_obj = {
|
||||
"command": {
|
||||
"name": "browse_website",
|
||||
"args":{
|
||||
"url": "https://github.com/Torantulino/Auto-GPT"
|
||||
}
|
||||
},
|
||||
"thoughts":
|
||||
{
|
||||
"text": "Browsing the repository to identify potential bugs",
|
||||
"reasoning": "Before fixing bugs, I need to identify what needs fixing. I will use the 'browse_website' command to analyze the repository.",
|
||||
"plan": "- Analyze the repository for potential bugs and areas of improvement",
|
||||
"criticism": "I need to ensure I am thorough and pay attention to detail while browsing the repository.",
|
||||
"speak": "I am browsing the repository to identify potential bugs."
|
||||
}
|
||||
}
|
||||
# Assert that this raises an exception:
|
||||
self.assertEqual(fix_and_parse_json(json_str, try_to_fix_with_gpt=False), good_obj)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in New Issue
Block a user