From ada2e19829155f08541c1358cbf384a8e01ff6f7 Mon Sep 17 00:00:00 2001 From: Reinier van der Leer Date: Thu, 2 May 2024 00:43:11 +0200 Subject: [PATCH] refactor(agent)!: Use Pydantic models for `Agent` process output (#7116) * Introduce `BaseAgentActionProposal`, `OneShotAgentActionProposal`, and `AssistantThoughts` models to replace `ThoughtProcessResponse`, `DEFAULT_RESPONSE_SCHEMA` * Refactor and clean up code because now we don't need to do as much type checking everywhere * Tweak `OneShot` response format instruction Granular: * `autogpt.agents.prompt_strategies.one_shot` * Replace ThoughtProcessResponse`, `DEFAULT_RESPONSE_SCHEMA` and parsing logic by `AssistantThoughts` and `OneShotAgentActionProposal` * (TANGENTIAL) Move response format instruction into main system prompt message * (TANGENTIAL) Adjust response format instruction * `autogpt.agents.base` * Add `BaseAgentActionProposal` base model -> replace `ThoughtProcessOutput` * Change signature of `execute` method to accept `BaseAgentActionProposal` instead of separate `command_name` and `command_args` * Add `do_not_execute(proposal, feedback)` abstract method, replacing `execute("human_feedback", ..., feedback)` * Move `history` definition from `BaseAgentSettings` to `AgentSettings` (the only place where it's used anyway) * `autogpt.models` * Add `.utils` > `ModelWithSummary` base model * Make the models in `.action_history` (`Episode`, `EpisodicActionHistory`) generic with a type parameter for the type of `Episode.action` * `autogpt.core.resource.model_providers.schema` * Add `__str__` to `AssistantFunctionCall` which pretty-prints the function call All other changes are a direct result of the changes above. ## BREAKING CHANGE: * Due to the change in `autogpt.models.action_history`, the application after this change will be unable to load/resume agents from before this change and vice versa. * The `additional_output` field in the response of `execute_step` has changed slightly: * Type of `.thoughts.plan` has changed from `str` to `list[str]` * `.command` -> `.use_tool` * `.command.args` -> `.use_tool.arguments` --- autogpts/autogpt/autogpt/agents/__init__.py | 11 +- autogpts/autogpt/autogpt/agents/agent.py | 135 +++++------ autogpts/autogpt/autogpt/agents/base.py | 36 ++- .../autogpt/agents/features/watchdog.py | 22 +- .../agents/prompt_strategies/one_shot.py | 217 ++++-------------- autogpts/autogpt/autogpt/agents/protocols.py | 4 +- .../autogpt/app/agent_protocol_server.py | 83 +++---- autogpts/autogpt/autogpt/app/main.py | 159 +++++++------ .../autogpt/components/event_history.py | 20 +- .../core/resource/model_providers/schema.py | 4 + .../autogpt/autogpt/models/action_history.py | 46 ++-- autogpts/autogpt/autogpt/models/utils.py | 10 + 12 files changed, 307 insertions(+), 440 deletions(-) create mode 100644 autogpts/autogpt/autogpt/models/utils.py diff --git a/autogpts/autogpt/autogpt/agents/__init__.py b/autogpts/autogpt/autogpt/agents/__init__.py index 94a5f42a5..f6ae48c59 100644 --- a/autogpts/autogpt/autogpt/agents/__init__.py +++ b/autogpts/autogpt/autogpt/agents/__init__.py @@ -1,4 +1,9 @@ -from .agent import Agent -from .base import AgentThoughts, BaseAgent, CommandArgs, CommandName +from .agent import Agent, OneShotAgentActionProposal +from .base import BaseAgent, BaseAgentActionProposal -__all__ = ["BaseAgent", "Agent", "CommandName", "CommandArgs", "AgentThoughts"] +__all__ = [ + "BaseAgent", + "Agent", + "BaseAgentActionProposal", + "OneShotAgentActionProposal", +] diff --git a/autogpts/autogpt/autogpt/agents/agent.py b/autogpts/autogpt/autogpt/agents/agent.py index 0ffd2db2a..3572cbed0 100644 --- a/autogpts/autogpt/autogpt/agents/agent.py +++ b/autogpts/autogpt/autogpt/agents/agent.py @@ -8,7 +8,6 @@ from typing import TYPE_CHECKING, Optional import sentry_sdk from pydantic import Field -from autogpt.agents.prompt_strategies.one_shot import OneShotAgentPromptStrategy from autogpt.commands.execute_code import CodeExecutorComponent from autogpt.commands.git_operations import GitOperationsComponent from autogpt.commands.image_gen import ImageGeneratorComponent @@ -19,9 +18,11 @@ from autogpt.commands.web_selenium import WebSeleniumComponent from autogpt.components.event_history import EventHistoryComponent from autogpt.core.configuration import Configurable from autogpt.core.prompting import ChatPrompt -from autogpt.core.resource.model_providers import ChatMessage, ChatModelProvider -from autogpt.core.resource.model_providers.schema import ( +from autogpt.core.resource.model_providers import ( AssistantChatMessage, + AssistantFunctionCall, + ChatMessage, + ChatModelProvider, ChatModelResponse, ) from autogpt.core.runner.client_lib.logging.helpers import dump_prompt @@ -33,12 +34,12 @@ from autogpt.logs.log_cycle import ( USER_INPUT_FILE_NAME, LogCycleHandler, ) -from autogpt.logs.utils import fmt_kwargs from autogpt.models.action_history import ( ActionErrorResult, ActionInterruptedByHuman, ActionResult, ActionSuccessResult, + EpisodicActionHistory, ) from autogpt.models.command import Command, CommandOutput from autogpt.utils.exceptions import ( @@ -49,15 +50,14 @@ from autogpt.utils.exceptions import ( UnknownCommandError, ) -from .base import ( - BaseAgent, - BaseAgentConfiguration, - BaseAgentSettings, - ThoughtProcessOutput, -) +from .base import BaseAgent, BaseAgentConfiguration, BaseAgentSettings from .features.agent_file_manager import FileManagerComponent from .features.context import ContextComponent from .features.watchdog import WatchdogComponent +from .prompt_strategies.one_shot import ( + OneShotAgentActionProposal, + OneShotAgentPromptStrategy, +) from .protocols import ( AfterExecute, AfterParse, @@ -79,6 +79,11 @@ class AgentConfiguration(BaseAgentConfiguration): class AgentSettings(BaseAgentSettings): config: AgentConfiguration = Field(default_factory=AgentConfiguration) + history: EpisodicActionHistory[OneShotAgentActionProposal] = Field( + default_factory=EpisodicActionHistory[OneShotAgentActionProposal] + ) + """(STATE) The action history of the agent.""" + class Agent(BaseAgent, Configurable[AgentSettings]): default_settings: AgentSettings = AgentSettings( @@ -137,7 +142,7 @@ class Agent(BaseAgent, Configurable[AgentSettings]): self.event_history = settings.history self.legacy_config = legacy_config - async def propose_action(self) -> ThoughtProcessOutput: + async def propose_action(self) -> OneShotAgentActionProposal: """Proposes the next action to execute, based on the task and current state. Returns: @@ -188,12 +193,12 @@ class Agent(BaseAgent, Configurable[AgentSettings]): async def complete_and_parse( self, prompt: ChatPrompt, exception: Optional[Exception] = None - ) -> ThoughtProcessOutput: + ) -> OneShotAgentActionProposal: if exception: prompt.messages.append(ChatMessage.system(f"Error: {exception}")) response: ChatModelResponse[ - ThoughtProcessOutput + OneShotAgentActionProposal ] = await self.llm_provider.create_chat_completion( prompt.messages, model_name=self.llm.name, @@ -210,7 +215,7 @@ class Agent(BaseAgent, Configurable[AgentSettings]): self.state.ai_profile.ai_name, self.created_at, self.config.cycle_count, - result.thoughts, + result.thoughts.dict(), NEXT_ACTION_FILE_NAME, ) @@ -220,13 +225,13 @@ class Agent(BaseAgent, Configurable[AgentSettings]): def parse_and_validate_response( self, llm_response: AssistantChatMessage - ) -> ThoughtProcessOutput: + ) -> OneShotAgentActionProposal: parsed_response = self.prompt_strategy.parse_response_content(llm_response) # Validate command arguments - command_name = parsed_response.command_name + command_name = parsed_response.use_tool.name command = self._get_command(command_name) - if arg_errors := command.validate_args(parsed_response.command_args)[1]: + if arg_errors := command.validate_args(parsed_response.use_tool.arguments)[1]: fmt_errors = [ f"{'.'.join(str(p) for p in f.path)}: {f.message}" if f.path @@ -242,74 +247,70 @@ class Agent(BaseAgent, Configurable[AgentSettings]): async def execute( self, - command_name: str, - command_args: dict[str, str] = {}, - user_input: str = "", + proposal: OneShotAgentActionProposal, + user_feedback: str = "", ) -> ActionResult: - result: ActionResult + tool = proposal.use_tool - if command_name == "human_feedback": - result = ActionInterruptedByHuman(feedback=user_input) - self.log_cycle_handler.log_cycle( - self.state.ai_profile.ai_name, - self.created_at, - self.config.cycle_count, - user_input, - USER_INPUT_FILE_NAME, + # Get commands + self.commands = await self.run_pipeline(CommandProvider.get_commands) + self._remove_disabled_commands() + + try: + return_value = await self._execute_tool(tool) + + result = ActionSuccessResult(outputs=return_value) + except AgentTerminated: + raise + except AgentException as e: + result = ActionErrorResult.from_exception(e) + logger.warning(f"{tool} raised an error: {e}") + sentry_sdk.capture_exception(e) + + result_tlength = self.llm_provider.count_tokens(str(result), self.llm.name) + if result_tlength > self.send_token_limit // 3: + result = ActionErrorResult( + reason=f"Command {tool.name} returned too much output. " + "Do not execute this command again with the same arguments." ) - else: - # Get commands - self.commands = await self.run_pipeline(CommandProvider.get_commands) - self._remove_disabled_commands() - - try: - return_value = await self._execute_command( - command_name=command_name, - arguments=command_args, - ) - - result = ActionSuccessResult(outputs=return_value) - except AgentTerminated: - raise - except AgentException as e: - result = ActionErrorResult.from_exception(e) - logger.warning( - f"{command_name}({fmt_kwargs(command_args)}) raised an error: {e}" - ) - sentry_sdk.capture_exception(e) - - result_tlength = self.llm_provider.count_tokens(str(result), self.llm.name) - if result_tlength > self.send_token_limit // 3: - result = ActionErrorResult( - reason=f"Command {command_name} returned too much output. " - "Do not execute this command again with the same arguments." - ) - await self.run_pipeline(AfterExecute.after_execute, result) logger.debug("\n".join(self.trace)) return result - async def _execute_command( - self, - command_name: str, - arguments: dict[str, str], - ) -> CommandOutput: + async def do_not_execute( + self, denied_proposal: OneShotAgentActionProposal, user_feedback: str + ) -> ActionResult: + result = ActionInterruptedByHuman(feedback=user_feedback) + self.log_cycle_handler.log_cycle( + self.state.ai_profile.ai_name, + self.created_at, + self.config.cycle_count, + user_feedback, + USER_INPUT_FILE_NAME, + ) + + await self.run_pipeline(AfterExecute.after_execute, result) + + logger.debug("\n".join(self.trace)) + + return result + + async def _execute_tool(self, tool_call: AssistantFunctionCall) -> CommandOutput: """Execute the command and return the result Args: - command_name (str): The name of the command to execute - arguments (dict): The arguments for the command + tool_call (AssistantFunctionCall): The tool call to execute Returns: - str: The result of the command + str: The execution result """ # Execute a native command with the same name or alias, if it exists - command = self._get_command(command_name) + command = self._get_command(tool_call.name) try: - result = command(**arguments) + result = command(**tool_call.arguments) if inspect.isawaitable(result): return await result return result diff --git a/autogpts/autogpt/autogpt/agents/base.py b/autogpts/autogpt/autogpt/agents/base.py index e293441d8..cf8e3cac8 100644 --- a/autogpts/autogpt/autogpt/agents/base.py +++ b/autogpts/autogpt/autogpt/agents/base.py @@ -22,6 +22,7 @@ if TYPE_CHECKING: from autogpt.core.resource.model_providers.schema import ( ChatModelInfo, ) + from autogpt.models.action_history import ActionResult from autogpt.agents import protocols as _protocols from autogpt.agents.components import ( @@ -38,11 +39,12 @@ from autogpt.core.configuration import ( SystemSettings, UserConfigurable, ) +from autogpt.core.resource.model_providers import AssistantFunctionCall from autogpt.core.resource.model_providers.openai import ( OPEN_AI_CHAT_MODELS, OpenAIModelName, ) -from autogpt.models.action_history import ActionResult, EpisodicActionHistory +from autogpt.models.utils import ModelWithSummary from autogpt.prompts.prompt import DEFAULT_TRIGGERING_PROMPT logger = logging.getLogger(__name__) @@ -50,10 +52,6 @@ logger = logging.getLogger(__name__) T = TypeVar("T") P = ParamSpec("P") -CommandName = str -CommandArgs = dict[str, str] -AgentThoughts = dict[str, Any] - class BaseAgentConfiguration(SystemConfiguration): allow_fs_access: bool = UserConfigurable(default=False) @@ -131,9 +129,6 @@ class BaseAgentSettings(SystemSettings): config: BaseAgentConfiguration = Field(default_factory=BaseAgentConfiguration) """The configuration for this BaseAgent subsystem instance.""" - history: EpisodicActionHistory = Field(default_factory=EpisodicActionHistory) - """(STATE) The action history of the agent.""" - class AgentMeta(ABCMeta): def __call__(cls, *args, **kwargs): @@ -144,13 +139,9 @@ class AgentMeta(ABCMeta): return instance -class ThoughtProcessOutput(BaseModel): - command_name: str = "" - command_args: dict[str, Any] = Field(default_factory=dict) - thoughts: dict[str, Any] = Field(default_factory=dict) - - def to_tuple(self) -> tuple[CommandName, CommandArgs, AgentThoughts]: - return self.command_name, self.command_args, self.thoughts +class BaseAgentActionProposal(BaseModel): + thoughts: str | ModelWithSummary + use_tool: AssistantFunctionCall = None class BaseAgent(Configurable[BaseAgentSettings], metaclass=AgentMeta): @@ -190,15 +181,22 @@ class BaseAgent(Configurable[BaseAgentSettings], metaclass=AgentMeta): return self.config.send_token_limit or self.llm.max_tokens * 3 // 4 @abstractmethod - async def propose_action(self) -> ThoughtProcessOutput: + async def propose_action(self) -> BaseAgentActionProposal: ... @abstractmethod async def execute( self, - command_name: str, - command_args: dict[str, str] = {}, - user_input: str = "", + proposal: BaseAgentActionProposal, + user_feedback: str = "", + ) -> ActionResult: + ... + + @abstractmethod + async def do_not_execute( + self, + denied_proposal: BaseAgentActionProposal, + user_feedback: str, ) -> ActionResult: ... diff --git a/autogpts/autogpt/autogpt/agents/features/watchdog.py b/autogpts/autogpt/autogpt/agents/features/watchdog.py index 8f3758ef4..9a623d6a5 100644 --- a/autogpts/autogpt/autogpt/agents/features/watchdog.py +++ b/autogpts/autogpt/autogpt/agents/features/watchdog.py @@ -1,13 +1,11 @@ import logging -from autogpt.agents.base import ThoughtProcessOutput +from autogpt.agents.base import BaseAgentActionProposal, BaseAgentConfiguration from autogpt.agents.components import ComponentSystemError from autogpt.agents.features.context import ContextComponent from autogpt.agents.protocols import AfterParse from autogpt.models.action_history import EpisodicActionHistory -from ..base import BaseAgentConfiguration - logger = logging.getLogger(__name__) @@ -20,13 +18,15 @@ class WatchdogComponent(AfterParse): run_after = [ContextComponent] def __init__( - self, config: BaseAgentConfiguration, event_history: EpisodicActionHistory + self, + config: BaseAgentConfiguration, + event_history: EpisodicActionHistory[BaseAgentActionProposal], ): self.config = config self.event_history = event_history self.revert_big_brain = False - def after_parse(self, result: ThoughtProcessOutput) -> None: + def after_parse(self, result: BaseAgentActionProposal) -> None: if self.revert_big_brain: self.config.big_brain = False self.revert_big_brain = False @@ -38,18 +38,18 @@ class WatchdogComponent(AfterParse): previous_cycle = self.event_history.episodes[ self.event_history.cursor - 1 ] - previous_command = previous_cycle.action.name - previous_command_args = previous_cycle.action.args + previous_command = previous_cycle.action.use_tool.name + previous_command_args = previous_cycle.action.use_tool.arguments rethink_reason = "" - if not result.command_name: + if not result.use_tool: rethink_reason = "AI did not specify a command" elif ( - result.command_name == previous_command - and result.command_args == previous_command_args + result.use_tool.name == previous_command + and result.use_tool.arguments == previous_command_args ): - rethink_reason = f"Repititive command detected ({result.command_name})" + rethink_reason = f"Repititive command detected ({result.use_tool.name})" if rethink_reason: logger.info(f"{rethink_reason}, re-thinking with SMART_LLM...") diff --git a/autogpts/autogpt/autogpt/agents/prompt_strategies/one_shot.py b/autogpts/autogpt/autogpt/agents/prompt_strategies/one_shot.py index 0be7b8673..53fadaa7c 100644 --- a/autogpts/autogpt/autogpt/agents/prompt_strategies/one_shot.py +++ b/autogpts/autogpt/autogpt/agents/prompt_strategies/one_shot.py @@ -6,8 +6,9 @@ import re from logging import Logger import distro +from pydantic import Field -from autogpt.agents.base import ThoughtProcessOutput +from autogpt.agents.base import BaseAgentActionProposal from autogpt.config import AIDirectives, AIProfile from autogpt.core.configuration.schema import SystemConfiguration, UserConfigurable from autogpt.core.prompting import ( @@ -22,9 +23,32 @@ from autogpt.core.resource.model_providers.schema import ( ) from autogpt.core.utils.json_schema import JSONSchema from autogpt.core.utils.json_utils import extract_dict_from_json +from autogpt.models.utils import ModelWithSummary from autogpt.prompts.utils import format_numbered_list from autogpt.utils.exceptions import InvalidAgentResponseError +_RESPONSE_INTERFACE_NAME = "AssistantResponse" + + +class AssistantThoughts(ModelWithSummary): + observations: str = Field( + ..., description="Relevant observations from your last action (if any)" + ) + text: str = Field(..., description="Thoughts") + reasoning: str = Field(..., description="Reasoning behind the thoughts") + self_criticism: str = Field(..., description="Constructive self-criticism") + plan: list[str] = Field( + ..., description="Short list that conveys the long-term plan" + ) + speak: str = Field(..., description="Summary of thoughts, to say to user") + + def summary(self) -> str: + return self.text + + +class OneShotAgentActionProposal(BaseAgentActionProposal): + thoughts: AssistantThoughts + class OneShotAgentPromptConfiguration(SystemConfiguration): DEFAULT_BODY_TEMPLATE: str = ( @@ -51,70 +75,7 @@ class OneShotAgentPromptConfiguration(SystemConfiguration): "and respond using the JSON schema specified previously:" ) - DEFAULT_RESPONSE_SCHEMA = JSONSchema( - type=JSONSchema.Type.OBJECT, - properties={ - "thoughts": JSONSchema( - type=JSONSchema.Type.OBJECT, - required=True, - properties={ - "observations": JSONSchema( - description=( - "Relevant observations from your last action (if any)" - ), - type=JSONSchema.Type.STRING, - required=False, - ), - "text": JSONSchema( - description="Thoughts", - type=JSONSchema.Type.STRING, - required=True, - ), - "reasoning": JSONSchema( - type=JSONSchema.Type.STRING, - required=True, - ), - "self_criticism": JSONSchema( - description="Constructive self-criticism", - type=JSONSchema.Type.STRING, - required=True, - ), - "plan": JSONSchema( - description=( - "Short markdown-style bullet list that conveys the " - "long-term plan" - ), - type=JSONSchema.Type.STRING, - required=True, - ), - "speak": JSONSchema( - description="Summary of thoughts, to say to user", - type=JSONSchema.Type.STRING, - required=True, - ), - }, - ), - "command": JSONSchema( - type=JSONSchema.Type.OBJECT, - required=True, - properties={ - "name": JSONSchema( - type=JSONSchema.Type.STRING, - required=True, - ), - "args": JSONSchema( - type=JSONSchema.Type.OBJECT, - required=True, - ), - }, - ), - }, - ) - body_template: str = UserConfigurable(default=DEFAULT_BODY_TEMPLATE) - response_schema: dict = UserConfigurable( - default_factory=DEFAULT_RESPONSE_SCHEMA.to_dict - ) choose_action_instruction: str = UserConfigurable( default=DEFAULT_CHOOSE_ACTION_INSTRUCTION ) @@ -139,7 +100,7 @@ class OneShotAgentPromptStrategy(PromptStrategy): logger: Logger, ): self.config = configuration - self.response_schema = JSONSchema.from_dict(configuration.response_schema) + self.response_schema = JSONSchema.from_dict(OneShotAgentActionProposal.schema()) self.logger = logger @property @@ -168,19 +129,12 @@ class OneShotAgentPromptStrategy(PromptStrategy): include_os_info=include_os_info, ) - user_task = f'"""{task}"""' - - response_format_instr = self.response_format_instruction( - self.config.use_functions_api - ) - messages.append(ChatMessage.system(response_format_instr)) - final_instruction_msg = ChatMessage.user(self.config.choose_action_instruction) prompt = ChatPrompt( messages=[ ChatMessage.system(system_prompt), - ChatMessage.user(user_task), + ChatMessage.user(f'"""{task}"""'), *messages, final_instruction_msg, ], @@ -215,6 +169,10 @@ class OneShotAgentPromptStrategy(PromptStrategy): " in the next message. Your job is to complete the task while following" " your directives as given above, and terminate when your task is done." ] + + [ + "## RESPONSE FORMAT\n" + + self.response_format_instruction(self.config.use_functions_api) + ] ) # Join non-empty parts together into paragraph format @@ -225,27 +183,21 @@ class OneShotAgentPromptStrategy(PromptStrategy): if ( use_functions_api and response_schema.properties - and "command" in response_schema.properties + and "use_tool" in response_schema.properties ): - del response_schema.properties["command"] + del response_schema.properties["use_tool"] # Unindent for performance response_format = re.sub( r"\n\s+", "\n", - response_schema.to_typescript_object_interface("Response"), - ) - - instruction = ( - "Respond with pure JSON containing your thoughts, " "and invoke a tool." - if use_functions_api - else "Respond with pure JSON." + response_schema.to_typescript_object_interface(_RESPONSE_INTERFACE_NAME), ) return ( - f"{instruction} " - "The JSON object should be compatible with the TypeScript type `Response` " - f"from the following:\n{response_format}" + f"YOU MUST ALWAYS RESPOND WITH A JSON OBJECT OF THE FOLLOWING TYPE:\n" + f"{response_format}" + + ("\n\nYOU MUST ALSO INVOKE A TOOL!" if use_functions_api else "") ) def _generate_intro_prompt(self, ai_profile: AIProfile) -> list[str]: @@ -309,7 +261,7 @@ class OneShotAgentPromptStrategy(PromptStrategy): def parse_response_content( self, response: AssistantChatMessage, - ) -> ThoughtProcessOutput: + ) -> OneShotAgentActionProposal: if not response.content: raise InvalidAgentResponseError("Assistant response has no text content") @@ -323,92 +275,13 @@ class OneShotAgentPromptStrategy(PromptStrategy): ) assistant_reply_dict = extract_dict_from_json(response.content) self.logger.debug( - "Validating object extracted from LLM response:\n" + "Parsing object extracted from LLM response:\n" f"{json.dumps(assistant_reply_dict, indent=4)}" ) - response_schema = self.response_schema.copy(deep=True) - if ( - self.config.use_functions_api - and response_schema.properties - and "command" in response_schema.properties - ): - del response_schema.properties["command"] - _, errors = response_schema.validate_object(assistant_reply_dict) - if errors: - raise InvalidAgentResponseError( - "Validation of response failed:\n " - + ";\n ".join([str(e) for e in errors]) - ) - - # Get command name and arguments - command_name, arguments = extract_command( - assistant_reply_dict, response, self.config.use_functions_api - ) - return ThoughtProcessOutput( - command_name=command_name, - command_args=arguments, - thoughts=assistant_reply_dict, - ) - - -############# -# Utilities # -############# - - -def extract_command( - assistant_reply_json: dict, - assistant_reply: AssistantChatMessage, - use_openai_functions_api: bool, -) -> tuple[str, dict[str, str]]: - """Parse the response and return the command name and arguments - - Args: - assistant_reply_json (dict): The response object from the AI - assistant_reply (AssistantChatMessage): The model response from the AI - config (Config): The config object - - Returns: - tuple: The command name and arguments - - Raises: - json.decoder.JSONDecodeError: If the response is not valid JSON - - Exception: If any other error occurs - """ - if use_openai_functions_api: - if not assistant_reply.tool_calls: - raise InvalidAgentResponseError("Assistant did not use any tools") - assistant_reply_json["command"] = { - "name": assistant_reply.tool_calls[0].function.name, - "args": assistant_reply.tool_calls[0].function.arguments, - } - try: - if not isinstance(assistant_reply_json, dict): - raise InvalidAgentResponseError( - f"The previous message sent was not a dictionary {assistant_reply_json}" - ) - - if "command" not in assistant_reply_json: - raise InvalidAgentResponseError("Missing 'command' object in JSON") - - command = assistant_reply_json["command"] - if not isinstance(command, dict): - raise InvalidAgentResponseError("'command' object is not a dictionary") - - if "name" not in command: - raise InvalidAgentResponseError("Missing 'name' field in 'command' object") - - command_name = command["name"] - - # Use an empty dictionary if 'args' field is not present in 'command' object - arguments = command.get("args", {}) - - return command_name, arguments - - except json.decoder.JSONDecodeError: - raise InvalidAgentResponseError("Invalid JSON") - - except Exception as e: - raise InvalidAgentResponseError(str(e)) + parsed_response = OneShotAgentActionProposal.parse_obj(assistant_reply_dict) + if self.config.use_functions_api: + if not response.tool_calls: + raise InvalidAgentResponseError("Assistant did not use a tool") + parsed_response.use_tool = response.tool_calls[0].function + return parsed_response diff --git a/autogpts/autogpt/autogpt/agents/protocols.py b/autogpts/autogpt/autogpt/agents/protocols.py index 07984ba08..22fab67f9 100644 --- a/autogpts/autogpt/autogpt/agents/protocols.py +++ b/autogpts/autogpt/autogpt/agents/protocols.py @@ -4,7 +4,7 @@ from typing import TYPE_CHECKING, Iterator from autogpt.agents.components import AgentComponent if TYPE_CHECKING: - from autogpt.agents.base import ThoughtProcessOutput + from autogpt.agents.base import BaseAgentActionProposal from autogpt.core.resource.model_providers.schema import ChatMessage from autogpt.models.action_history import ActionResult from autogpt.models.command import Command @@ -35,7 +35,7 @@ class MessageProvider(AgentComponent): class AfterParse(AgentComponent): @abstractmethod - def after_parse(self, result: "ThoughtProcessOutput") -> None: + def after_parse(self, result: "BaseAgentActionProposal") -> None: ... diff --git a/autogpts/autogpt/autogpt/app/agent_protocol_server.py b/autogpts/autogpt/autogpt/app/agent_protocol_server.py index 3c0a49a68..cdaf1f460 100644 --- a/autogpts/autogpt/autogpt/app/agent_protocol_server.py +++ b/autogpts/autogpt/autogpt/app/agent_protocol_server.py @@ -33,11 +33,9 @@ from autogpt.agent_factory.generators import generate_agent_for_task from autogpt.agent_manager import AgentManager from autogpt.app.utils import is_port_free from autogpt.config import Config -from autogpt.core.resource.model_providers import ChatModelProvider +from autogpt.core.resource.model_providers import ChatModelProvider, ModelProviderBudget from autogpt.core.resource.model_providers.openai import OpenAIProvider -from autogpt.core.resource.model_providers.schema import ModelProviderBudget from autogpt.file_storage import FileStorage -from autogpt.logs.utils import fmt_kwargs from autogpt.models.action_history import ActionErrorResult, ActionSuccessResult from autogpt.utils.exceptions import AgentFinished from autogpt.utils.utils import DEFAULT_ASK_COMMAND, DEFAULT_FINISH_COMMAND @@ -201,7 +199,7 @@ class AgentProtocolServer: # To prevent this from interfering with the agent's process, we ignore the input # of this first step request, and just generate the first step proposal. is_init_step = not bool(agent.event_history) - execute_command, execute_command_args, execute_result = None, None, None + last_proposal, tool_result = None, None execute_approved = False # HACK: only for compatibility with AGBenchmark @@ -215,13 +213,11 @@ class AgentProtocolServer: and agent.event_history.current_episode and not agent.event_history.current_episode.result ): - execute_command = agent.event_history.current_episode.action.name - execute_command_args = agent.event_history.current_episode.action.args + last_proposal = agent.event_history.current_episode.action execute_approved = not user_input logger.debug( - f"Agent proposed command" - f" {execute_command}({fmt_kwargs(execute_command_args)})." + f"Agent proposed command {last_proposal.use_tool}." f" User input/feedback: {repr(user_input)}" ) @@ -229,24 +225,25 @@ class AgentProtocolServer: step = await self.db.create_step( task_id=task_id, input=step_request, - is_last=execute_command == DEFAULT_FINISH_COMMAND and execute_approved, + is_last=( + last_proposal is not None + and last_proposal.use_tool.name == DEFAULT_FINISH_COMMAND + and execute_approved + ), ) agent.llm_provider = self._get_task_llm_provider(task, step.step_id) # Execute previously proposed action - if execute_command: - assert execute_command_args is not None + if last_proposal: agent.file_manager.workspace.on_write_file = ( lambda path: self._on_agent_write_file( task=task, step=step, relative_path=path ) ) - if execute_command == DEFAULT_ASK_COMMAND: - execute_result = ActionSuccessResult(outputs=user_input) - agent.event_history.register_result(execute_result) - elif not execute_command: - execute_result = None + if last_proposal.use_tool.name == DEFAULT_ASK_COMMAND: + tool_result = ActionSuccessResult(outputs=user_input) + agent.event_history.register_result(tool_result) elif execute_approved: step = await self.db.update_step( task_id=task_id, @@ -256,10 +253,7 @@ class AgentProtocolServer: try: # Execute previously proposed action - execute_result = await agent.execute( - command_name=execute_command, - command_args=execute_command_args, - ) + tool_result = await agent.execute(last_proposal) except AgentFinished: additional_output = {} task_total_cost = agent.llm_provider.get_incurred_cost() @@ -273,25 +267,20 @@ class AgentProtocolServer: step = await self.db.update_step( task_id=task_id, step_id=step.step_id, - output=execute_command_args["reason"], + output=last_proposal.use_tool.arguments["reason"], additional_output=additional_output, ) await agent.file_manager.save_state() return step else: assert user_input - execute_result = await agent.execute( - command_name="human_feedback", # HACK - command_args={}, - user_input=user_input, - ) + tool_result = await agent.do_not_execute(last_proposal, user_input) # Propose next action try: - next_command, next_command_args, raw_output = ( - await agent.propose_action() - ).to_tuple() - logger.debug(f"AI output: {raw_output}") + assistant_response = await agent.propose_action() + next_tool_to_use = assistant_response.use_tool + logger.debug(f"AI output: {assistant_response.thoughts}") except Exception as e: step = await self.db.update_step( task_id=task_id, @@ -304,44 +293,44 @@ class AgentProtocolServer: # Format step output output = ( ( - f"`{execute_command}({fmt_kwargs(execute_command_args)})` returned:" - + ("\n\n" if "\n" in str(execute_result) else " ") - + f"{execute_result}\n\n" + f"`{last_proposal.use_tool}` returned:" + + ("\n\n" if "\n" in str(tool_result) else " ") + + f"{tool_result}\n\n" ) - if execute_command_args and execute_command != DEFAULT_ASK_COMMAND + if last_proposal and last_proposal.use_tool.name != DEFAULT_ASK_COMMAND else "" ) - output += f"{raw_output['thoughts']['speak']}\n\n" + output += f"{assistant_response.thoughts.speak}\n\n" output += ( - f"Next Command: {next_command}({fmt_kwargs(next_command_args)})" - if next_command != DEFAULT_ASK_COMMAND - else next_command_args["question"] + f"Next Command: {next_tool_to_use}" + if next_tool_to_use.name != DEFAULT_ASK_COMMAND + else next_tool_to_use.arguments["question"] ) additional_output = { **( { "last_action": { - "name": execute_command, - "args": execute_command_args, + "name": last_proposal.use_tool.name, + "args": last_proposal.use_tool.arguments, "result": ( "" - if execute_result is None + if tool_result is None else ( - orjson.loads(execute_result.json()) - if not isinstance(execute_result, ActionErrorResult) + orjson.loads(tool_result.json()) + if not isinstance(tool_result, ActionErrorResult) else { - "error": str(execute_result.error), - "reason": execute_result.reason, + "error": str(tool_result.error), + "reason": tool_result.reason, } ) ), }, } - if not is_init_step + if last_proposal and tool_result else {} ), - **raw_output, + **assistant_response.dict(), } task_cumulative_cost = agent.llm_provider.get_incurred_cost() diff --git a/autogpts/autogpt/autogpt/app/main.py b/autogpts/autogpt/autogpt/app/main.py index f256c8707..aaab5fe48 100644 --- a/autogpts/autogpt/autogpt/app/main.py +++ b/autogpts/autogpt/autogpt/app/main.py @@ -18,11 +18,12 @@ from forge.sdk.db import AgentDB if TYPE_CHECKING: from autogpt.agents.agent import Agent + from autogpt.agents.base import BaseAgentActionProposal from autogpt.agent_factory.configurators import configure_agent_with_state, create_agent from autogpt.agent_factory.profile_generator import generate_agent_profile_for_task from autogpt.agent_manager import AgentManager -from autogpt.agents import AgentThoughts, CommandArgs, CommandName +from autogpt.agents.prompt_strategies.one_shot import AssistantThoughts from autogpt.commands.execute_code import ( is_docker_available, we_are_running_in_a_docker_container, @@ -40,6 +41,7 @@ from autogpt.file_storage import FileStorageBackendName, get_storage from autogpt.logs.config import configure_logging from autogpt.logs.helpers import print_attribute, speak from autogpt.models.action_history import ActionInterruptedByHuman +from autogpt.models.utils import ModelWithSummary from autogpt.utils.exceptions import AgentTerminated, InvalidAgentResponseError from autogpt.utils.utils import DEFAULT_FINISH_COMMAND @@ -227,13 +229,12 @@ async def run_auto_gpt( ) if ( - agent.event_history.current_episode - and agent.event_history.current_episode.action.name - == DEFAULT_FINISH_COMMAND - and not agent.event_history.current_episode.result + (current_episode := agent.event_history.current_episode) + and current_episode.action.use_tool.name == DEFAULT_FINISH_COMMAND + and not current_episode.result ): # Agent was resumed after `finish` -> rewrite result of `finish` action - finish_reason = agent.event_history.current_episode.action.args["reason"] + finish_reason = current_episode.action.use_tool.arguments["reason"] print(f"Agent previously self-terminated; reason: '{finish_reason}'") new_assignment = clean_input( config, "Please give a follow-up question or assignment:" @@ -531,11 +532,7 @@ async def run_interaction_loop( # Have the agent determine the next action to take. with spinner: try: - ( - command_name, - command_args, - assistant_reply_dict, - ) = (await agent.propose_action()).to_tuple() + action_proposal = await agent.propose_action() except InvalidAgentResponseError as e: logger.warning(f"The agent's thoughts could not be parsed: {e}") consecutive_failures += 1 @@ -558,9 +555,7 @@ async def run_interaction_loop( # Print the assistant's thoughts and the next command to the user. update_user( ai_profile, - command_name, - command_args, - assistant_reply_dict, + action_proposal, speak_mode=legacy_config.tts_config.speak_mode, ) @@ -569,12 +564,12 @@ async def run_interaction_loop( ################## handle_stop_signal() if cycles_remaining == 1: # Last cycle - user_feedback, user_input, new_cycles_remaining = await get_user_feedback( + feedback_type, feedback, new_cycles_remaining = await get_user_feedback( legacy_config, ai_profile, ) - if user_feedback == UserFeedback.AUTHORIZE: + if feedback_type == UserFeedback.AUTHORIZE: if new_cycles_remaining is not None: # Case 1: User is altering the cycle budget. if cycle_budget > 1: @@ -598,13 +593,13 @@ async def run_interaction_loop( "-=-=-=-=-=-=-= COMMAND AUTHORISED BY USER -=-=-=-=-=-=-=", extra={"color": Fore.MAGENTA}, ) - elif user_feedback == UserFeedback.EXIT: + elif feedback_type == UserFeedback.EXIT: logger.warning("Exiting...") exit() else: # user_feedback == UserFeedback.TEXT - command_name = "human_feedback" + pass else: - user_input = "" + feedback = "" # First log new-line so user can differentiate sections better in console print() if cycles_remaining != math.inf: @@ -619,33 +614,31 @@ async def run_interaction_loop( # Decrement the cycle counter first to reduce the likelihood of a SIGINT # happening during command execution, setting the cycles remaining to 1, # and then having the decrement set it to 0, exiting the application. - if command_name != "human_feedback": + if not feedback: cycles_remaining -= 1 - if not command_name: + if not action_proposal.use_tool: continue handle_stop_signal() - if command_name: - result = await agent.execute(command_name, command_args, user_input) + if not feedback: + result = await agent.execute(action_proposal) + else: + result = await agent.do_not_execute(action_proposal, feedback) - if result.status == "success": - logger.info( - result, extra={"title": "SYSTEM:", "title_color": Fore.YELLOW} - ) - elif result.status == "error": - logger.warning( - f"Command {command_name} returned an error: " - f"{result.error or result.reason}" - ) + if result.status == "success": + logger.info(result, extra={"title": "SYSTEM:", "title_color": Fore.YELLOW}) + elif result.status == "error": + logger.warning( + f"Command {action_proposal.use_tool.name} returned an error: " + f"{result.error or result.reason}" + ) def update_user( ai_profile: AIProfile, - command_name: CommandName, - command_args: CommandArgs, - assistant_reply_dict: AgentThoughts, + action_proposal: "BaseAgentActionProposal", speak_mode: bool = False, ) -> None: """Prints the assistant's thoughts and the next command to the user. @@ -661,18 +654,19 @@ def update_user( print_assistant_thoughts( ai_name=ai_profile.ai_name, - assistant_reply_json_valid=assistant_reply_dict, + thoughts=action_proposal.thoughts, speak_mode=speak_mode, ) if speak_mode: - speak(f"I want to execute {command_name}") + speak(f"I want to execute {action_proposal.use_tool.name}") # First log new-line so user can differentiate sections better in console print() + safe_tool_name = remove_ansi_escape(action_proposal.use_tool.name) logger.info( - f"COMMAND = {Fore.CYAN}{remove_ansi_escape(command_name)}{Style.RESET_ALL} " - f"ARGUMENTS = {Fore.CYAN}{command_args}{Style.RESET_ALL}", + f"COMMAND = {Fore.CYAN}{safe_tool_name}{Style.RESET_ALL} " + f"ARGUMENTS = {Fore.CYAN}{action_proposal.use_tool.arguments}{Style.RESET_ALL}", extra={ "title": "NEXT ACTION:", "title_color": Fore.CYAN, @@ -741,56 +735,59 @@ async def get_user_feedback( def print_assistant_thoughts( ai_name: str, - assistant_reply_json_valid: dict, + thoughts: str | ModelWithSummary | AssistantThoughts, speak_mode: bool = False, ) -> None: logger = logging.getLogger(__name__) - assistant_thoughts_reasoning = None - assistant_thoughts_plan = None - assistant_thoughts_speak = None - assistant_thoughts_criticism = None - - assistant_thoughts = assistant_reply_json_valid.get("thoughts", {}) - assistant_thoughts_text = remove_ansi_escape(assistant_thoughts.get("text", "")) - if assistant_thoughts: - assistant_thoughts_reasoning = remove_ansi_escape( - assistant_thoughts.get("reasoning", "") - ) - assistant_thoughts_plan = remove_ansi_escape(assistant_thoughts.get("plan", "")) - assistant_thoughts_criticism = remove_ansi_escape( - assistant_thoughts.get("self_criticism", "") - ) - assistant_thoughts_speak = remove_ansi_escape( - assistant_thoughts.get("speak", "") - ) - print_attribute( - f"{ai_name.upper()} THOUGHTS", assistant_thoughts_text, title_color=Fore.YELLOW + thoughts_text = remove_ansi_escape( + thoughts.text + if isinstance(thoughts, AssistantThoughts) + else thoughts.summary() + if isinstance(thoughts, ModelWithSummary) + else thoughts ) - print_attribute("REASONING", assistant_thoughts_reasoning, title_color=Fore.YELLOW) - if assistant_thoughts_plan: - print_attribute("PLAN", "", title_color=Fore.YELLOW) - # If it's a list, join it into a string - if isinstance(assistant_thoughts_plan, list): - assistant_thoughts_plan = "\n".join(assistant_thoughts_plan) - elif isinstance(assistant_thoughts_plan, dict): - assistant_thoughts_plan = str(assistant_thoughts_plan) - - # Split the input_string using the newline character and dashes - lines = assistant_thoughts_plan.split("\n") - for line in lines: - line = line.lstrip("- ") - logger.info(line.strip(), extra={"title": "- ", "title_color": Fore.GREEN}) print_attribute( - "CRITICISM", f"{assistant_thoughts_criticism}", title_color=Fore.YELLOW + f"{ai_name.upper()} THOUGHTS", thoughts_text, title_color=Fore.YELLOW ) - # Speak the assistant's thoughts - if assistant_thoughts_speak: - if speak_mode: - speak(assistant_thoughts_speak) - else: - print_attribute("SPEAK", assistant_thoughts_speak, title_color=Fore.YELLOW) + if isinstance(thoughts, AssistantThoughts): + print_attribute( + "REASONING", remove_ansi_escape(thoughts.reasoning), title_color=Fore.YELLOW + ) + if assistant_thoughts_plan := remove_ansi_escape( + "\n".join(f"- {p}" for p in thoughts.plan) + ): + print_attribute("PLAN", "", title_color=Fore.YELLOW) + # If it's a list, join it into a string + if isinstance(assistant_thoughts_plan, list): + assistant_thoughts_plan = "\n".join(assistant_thoughts_plan) + elif isinstance(assistant_thoughts_plan, dict): + assistant_thoughts_plan = str(assistant_thoughts_plan) + + # Split the input_string using the newline character and dashes + lines = assistant_thoughts_plan.split("\n") + for line in lines: + line = line.lstrip("- ") + logger.info( + line.strip(), extra={"title": "- ", "title_color": Fore.GREEN} + ) + print_attribute( + "CRITICISM", + remove_ansi_escape(thoughts.self_criticism), + title_color=Fore.YELLOW, + ) + + # Speak the assistant's thoughts + if assistant_thoughts_speak := remove_ansi_escape(thoughts.speak): + if speak_mode: + speak(assistant_thoughts_speak) + else: + print_attribute( + "SPEAK", assistant_thoughts_speak, title_color=Fore.YELLOW + ) + else: + speak(thoughts_text) def remove_ansi_escape(s: str) -> str: diff --git a/autogpts/autogpt/autogpt/components/event_history.py b/autogpts/autogpt/autogpt/components/event_history.py index a66b18e2d..fd3b5100c 100644 --- a/autogpts/autogpt/autogpt/components/event_history.py +++ b/autogpts/autogpt/autogpt/components/event_history.py @@ -1,12 +1,11 @@ -from typing import Callable, Iterator, Optional +from typing import Callable, Generic, Iterator, Optional -from autogpt.agents.base import ThoughtProcessOutput from autogpt.agents.features.watchdog import WatchdogComponent from autogpt.agents.protocols import AfterExecute, AfterParse, MessageProvider from autogpt.config.config import Config from autogpt.core.resource.model_providers.schema import ChatMessage, ChatModelProvider from autogpt.models.action_history import ( - Action, + AP, ActionResult, Episode, EpisodicActionHistory, @@ -14,14 +13,14 @@ from autogpt.models.action_history import ( from autogpt.prompts.utils import indent -class EventHistoryComponent(MessageProvider, AfterParse, AfterExecute): +class EventHistoryComponent(MessageProvider, AfterParse, AfterExecute, Generic[AP]): """Keeps track of the event history and provides a summary of the steps.""" run_after = [WatchdogComponent] def __init__( self, - event_history: EpisodicActionHistory, + event_history: EpisodicActionHistory[AP], max_tokens: int, count_tokens: Callable[[str], int], legacy_config: Config, @@ -41,15 +40,8 @@ class EventHistoryComponent(MessageProvider, AfterParse, AfterExecute): ): yield ChatMessage.system(f"## Progress on your Task so far\n\n{progress}") - def after_parse(self, result: ThoughtProcessOutput) -> None: - if result.command_name: - self.event_history.register_action( - Action( - name=result.command_name, - args=result.command_args, - reasoning=result.thoughts["thoughts"]["reasoning"], - ) - ) + def after_parse(self, result: AP) -> None: + self.event_history.register_action(result) async def after_execute(self, result: ActionResult) -> None: self.event_history.register_result(result) diff --git a/autogpts/autogpt/autogpt/core/resource/model_providers/schema.py b/autogpts/autogpt/autogpt/core/resource/model_providers/schema.py index dd69b526e..60df855f2 100644 --- a/autogpts/autogpt/autogpt/core/resource/model_providers/schema.py +++ b/autogpts/autogpt/autogpt/core/resource/model_providers/schema.py @@ -26,6 +26,7 @@ from autogpt.core.resource.schema import ( ResourceType, ) from autogpt.core.utils.json_schema import JSONSchema +from autogpt.logs.utils import fmt_kwargs class ModelProviderService(str, enum.Enum): @@ -72,6 +73,9 @@ class AssistantFunctionCall(BaseModel): name: str arguments: dict[str, Any] + def __str__(self) -> str: + return f"{self.name}({fmt_kwargs(self.arguments)})" + class AssistantFunctionCallDict(TypedDict): name: str diff --git a/autogpts/autogpt/autogpt/models/action_history.py b/autogpts/autogpt/autogpt/models/action_history.py index 2358e2236..d433cd80d 100644 --- a/autogpts/autogpt/autogpt/models/action_history.py +++ b/autogpts/autogpt/autogpt/models/action_history.py @@ -1,10 +1,13 @@ from __future__ import annotations import asyncio -from typing import TYPE_CHECKING, Any, Iterator, Literal, Optional +from typing import TYPE_CHECKING, Any, Generic, Iterator, Literal, Optional, TypeVar from pydantic import BaseModel, Field +from pydantic.generics import GenericModel +from autogpt.agents.base import BaseAgentActionProposal +from autogpt.models.utils import ModelWithSummary from autogpt.processing.text import summarize_text from autogpt.prompts.utils import format_numbered_list, indent @@ -13,18 +16,6 @@ if TYPE_CHECKING: from autogpt.core.resource.model_providers import ChatModelProvider -class Action(BaseModel): - name: str - args: dict[str, Any] - reasoning: str - - def format_call(self) -> str: - return ( - f"{self.name}" - f"({', '.join([f'{a}={repr(v)}' for a, v in self.args.items()])})" - ) - - class ActionSuccessResult(BaseModel): outputs: Any status: Literal["success"] = "success" @@ -86,15 +77,22 @@ class ActionInterruptedByHuman(BaseModel): ActionResult = ActionSuccessResult | ActionErrorResult | ActionInterruptedByHuman +AP = TypeVar("AP", bound=BaseAgentActionProposal) -class Episode(BaseModel): - action: Action + +class Episode(GenericModel, Generic[AP]): + action: AP result: ActionResult | None summary: str | None = None def format(self): - step = f"Executed `{self.action.format_call()}`\n" - step += f'- **Reasoning:** "{self.action.reasoning}"\n' + step = f"Executed `{self.action.use_tool}`\n" + reasoning = ( + _r.summary() + if isinstance(_r := self.action.thoughts, ModelWithSummary) + else _r + ) + step += f'- **Reasoning:** "{reasoning}"\n' step += ( "- **Status:** " f"`{self.result.status if self.result else 'did_not_finish'}`\n" @@ -113,28 +111,28 @@ class Episode(BaseModel): return step def __str__(self) -> str: - executed_action = f"Executed `{self.action.format_call()}`" + executed_action = f"Executed `{self.action.use_tool}`" action_result = f": {self.result}" if self.result else "." return executed_action + action_result -class EpisodicActionHistory(BaseModel): +class EpisodicActionHistory(GenericModel, Generic[AP]): """Utility container for an action history""" - episodes: list[Episode] = Field(default_factory=list) + episodes: list[Episode[AP]] = Field(default_factory=list) cursor: int = 0 _lock = asyncio.Lock() @property - def current_episode(self) -> Episode | None: + def current_episode(self) -> Episode[AP] | None: if self.cursor == len(self): return None return self[self.cursor] - def __getitem__(self, key: int) -> Episode: + def __getitem__(self, key: int) -> Episode[AP]: return self.episodes[key] - def __iter__(self) -> Iterator[Episode]: + def __iter__(self) -> Iterator[Episode[AP]]: return iter(self.episodes) def __len__(self) -> int: @@ -143,7 +141,7 @@ class EpisodicActionHistory(BaseModel): def __bool__(self) -> bool: return len(self.episodes) > 0 - def register_action(self, action: Action) -> None: + def register_action(self, action: AP) -> None: if not self.current_episode: self.episodes.append(Episode(action=action, result=None)) assert self.current_episode diff --git a/autogpts/autogpt/autogpt/models/utils.py b/autogpts/autogpt/autogpt/models/utils.py new file mode 100644 index 000000000..1b4db2175 --- /dev/null +++ b/autogpts/autogpt/autogpt/models/utils.py @@ -0,0 +1,10 @@ +from abc import ABC, abstractmethod + +from pydantic import BaseModel + + +class ModelWithSummary(BaseModel, ABC): + @abstractmethod + def summary(self) -> str: + """Should produce a human readable summary of the model content.""" + pass