Merge branch 'master' into summary_memory

This commit is contained in:
Richard Beales 2023-04-30 10:03:05 +01:00 committed by GitHub
commit cb6214e647
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
43 changed files with 3132 additions and 1347 deletions

View File

@ -127,3 +127,22 @@ When you run Pytest locally:
- Or: The test might be poorly written. In that case, you can make suggestions to change the test.
In our CI pipeline, Pytest will use the cassettes and not call paid API providers, so we need your help to record the replays that you break.
### Community Challenges
Challenges are goals we need Auto-GPT to achieve.
To pick the challenge you like, go to the tests/integration/challenges folder and select the areas you would like to work on.
- a challenge is new if level_currently_beaten is None
- a challenge is in progress if level_currently_beaten is greater or equal to 1
- a challenge is beaten if level_currently_beaten = max_level
Here is an example of how to run the memory challenge A and attempt to beat level 3.
pytest -s tests/integration/challenges/memory/test_memory_challenge_a.py --level=3
To beat a challenge, you're not allowed to change anything in the tests folder, you have to add code in the autogpt folder
Challenges use cassettes. Cassettes allow us to replay your runs in our CI pipeline.
Don't hesitate to delete the cassettes associated to the challenge you're working on if you need to. Otherwise it will keep replaying the last run.
Once you've beaten a new level of a challenge, please create a pull request and we will analyze how you changed Auto-GPT to beat the challenge.

View File

@ -8,7 +8,7 @@ from autogpt.llm import chat_with_ai, create_chat_completion, create_chat_messag
from autogpt.logs import logger, print_assistant_thoughts
from autogpt.speech import say_text
from autogpt.spinner import Spinner
from autogpt.utils import clean_input, send_chat_message_to_user
from autogpt.utils import clean_input
from autogpt.workspace import Workspace
@ -87,11 +87,7 @@ class Agent:
logger.typewriter_log(
"Continuous Limit Reached: ", Fore.YELLOW, f"{cfg.continuous_limit}"
)
send_chat_message_to_user(
f"Continuous Limit Reached: \n {cfg.continuous_limit}"
)
break
send_chat_message_to_user("Thinking... \n")
# Send message to AI, get response
with Spinner("Thinking... "):
assistant_reply = chat_with_ai(
@ -121,7 +117,6 @@ class Agent:
if cfg.speak_mode:
say_text(f"I want to execute {command_name}")
send_chat_message_to_user("Thinking... \n")
arguments = self._resolve_pathlike_command_args(arguments)
except Exception as e:
@ -132,24 +127,19 @@ class Agent:
# Get key press: Prompt the user to press enter to continue or escape
# to exit
self.user_input = ""
send_chat_message_to_user(
"NEXT ACTION: \n " + f"COMMAND = {command_name} \n "
f"ARGUMENTS = {arguments}"
)
logger.typewriter_log(
"NEXT ACTION: ",
Fore.CYAN,
f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL} "
f"ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}",
)
print(
logger.info(
"Enter 'y' to authorise command, 'y -N' to run N continuous commands, 's' to run self-feedback commands"
"'n' to exit program, or enter feedback for "
f"{self.ai_name}...",
flush=True,
f"{self.ai_name}..."
)
while True:
console_input = ""
if cfg.chat_messages_enabled:
console_input = clean_input("Waiting for your response...")
else:
@ -180,7 +170,7 @@ class Agent:
user_input = self_feedback_resp
break
elif console_input.lower().strip() == "":
print("Invalid input format.")
logger.warn("Invalid input format.")
continue
elif console_input.lower().startswith(f"{cfg.authorise_key} -"):
try:
@ -189,8 +179,8 @@ class Agent:
)
user_input = "GENERATE NEXT COMMAND JSON"
except ValueError:
print(
f"Invalid input format. Please enter '{cfg.authorise_key} -N' where N is"
logger.warn(
"Invalid input format. Please enter 'y -n' where n is"
" the number of continuous tasks."
)
continue
@ -210,16 +200,10 @@ class Agent:
"",
)
elif user_input == "EXIT":
send_chat_message_to_user("Exiting...")
print("Exiting...", flush=True)
logger.info("Exiting...")
break
else:
# Print command
send_chat_message_to_user(
"NEXT ACTION: \n " + f"COMMAND = {command_name} \n "
f"ARGUMENTS = {arguments}"
)
logger.typewriter_log(
"NEXT ACTION: ",
Fore.CYAN,

View File

@ -6,6 +6,7 @@ from autogpt.agent.agent_manager import AgentManager
from autogpt.commands.command import CommandRegistry, command
from autogpt.commands.web_requests import scrape_links, scrape_text
from autogpt.config import Config
from autogpt.logs import logger
from autogpt.memory import get_memory
from autogpt.processing.text import summarize_text
from autogpt.prompts.generator import PromptGenerator
@ -172,7 +173,7 @@ def get_hyperlinks(url: str) -> Union[str, List[str]]:
def shutdown() -> NoReturn:
"""Shut down the program"""
print("Shutting down...")
logger.info("Shutting down...")
quit()

View File

@ -8,6 +8,7 @@ from docker.errors import ImageNotFound
from autogpt.commands.command import command
from autogpt.config import Config
from autogpt.logs import logger
CFG = Config()
@ -22,7 +23,7 @@ def execute_python_file(filename: str) -> str:
Returns:
str: The output of the file
"""
print(f"Executing file '{filename}'")
logger.info(f"Executing file '{filename}'")
if not filename.endswith(".py"):
return "Error: Invalid file type. Only .py files are allowed."
@ -47,9 +48,11 @@ def execute_python_file(filename: str) -> str:
image_name = "python:3-alpine"
try:
client.images.get(image_name)
print(f"Image '{image_name}' found locally")
logger.warn(f"Image '{image_name}' found locally")
except ImageNotFound:
print(f"Image '{image_name}' not found locally, pulling from Docker Hub")
logger.info(
f"Image '{image_name}' not found locally, pulling from Docker Hub"
)
# Use the low-level API to stream the pull response
low_level_client = docker.APIClient()
for line in low_level_client.pull(image_name, stream=True, decode=True):
@ -57,9 +60,9 @@ def execute_python_file(filename: str) -> str:
status = line.get("status")
progress = line.get("progress")
if status and progress:
print(f"{status}: {progress}")
logger.info(f"{status}: {progress}")
elif status:
print(status)
logger.info(status)
container = client.containers.run(
image_name,
f"python {Path(filename).relative_to(CFG.workspace_path)}",
@ -85,7 +88,7 @@ def execute_python_file(filename: str) -> str:
return logs
except docker.errors.DockerException as e:
print(
logger.warn(
"Could not run the script in a container. If you haven't already, please install Docker https://docs.docker.com/get-docker/"
)
return f"Error: {str(e)}"
@ -118,7 +121,9 @@ def execute_shell(command_line: str) -> str:
if not current_dir.is_relative_to(CFG.workspace_path):
os.chdir(CFG.workspace_path)
print(f"Executing command '{command_line}' in working directory '{os.getcwd()}'")
logger.info(
f"Executing command '{command_line}' in working directory '{os.getcwd()}'"
)
result = subprocess.run(command_line, capture_output=True, shell=True)
output = f"STDOUT:\n{result.stdout}\nSTDERR:\n{result.stderr}"
@ -154,7 +159,9 @@ def execute_shell_popen(command_line) -> str:
if CFG.workspace_path not in current_dir:
os.chdir(CFG.workspace_path)
print(f"Executing command '{command_line}' in working directory '{os.getcwd()}'")
logger.info(
f"Executing command '{command_line}' in working directory '{os.getcwd()}'"
)
do_not_show_output = subprocess.DEVNULL
process = subprocess.Popen(

View File

@ -11,6 +11,7 @@ from requests.adapters import HTTPAdapter, Retry
from autogpt.commands.command import command
from autogpt.config import Config
from autogpt.logs import logger
from autogpt.spinner import Spinner
from autogpt.utils import readable_file_size
@ -106,25 +107,25 @@ def ingest_file(
:param overlap: The number of overlapping characters between chunks, default is 200
"""
try:
print(f"Working with file {filename}")
logger.info(f"Working with file {filename}")
content = read_file(filename)
content_length = len(content)
print(f"File length: {content_length} characters")
logger.info(f"File length: {content_length} characters")
chunks = list(split_file(content, max_length=max_length, overlap=overlap))
num_chunks = len(chunks)
for i, chunk in enumerate(chunks):
print(f"Ingesting chunk {i + 1} / {num_chunks} into memory")
logger.info(f"Ingesting chunk {i + 1} / {num_chunks} into memory")
memory_to_add = (
f"Filename: {filename}\n" f"Content part#{i + 1}/{num_chunks}: {chunk}"
)
memory.add(memory_to_add)
print(f"Done ingesting {num_chunks} chunks from {filename}.")
logger.info(f"Done ingesting {num_chunks} chunks from {filename}.")
except Exception as e:
print(f"Error while ingesting file '{filename}': {str(e)}")
logger.info(f"Error while ingesting file '{filename}': {str(e)}")
@command("write_to_file", "Write to file", '"filename": "<filename>", "text": "<text>"')
@ -264,7 +265,7 @@ def download_file(url, filename):
progress = f"{readable_file_size(downloaded_size)} / {readable_file_size(total_size)}"
spinner.update_message(f"{message} {progress}")
return f'Successfully downloaded and locally stored file: "{filename}"! (Size: {readable_file_size(total_size)})'
return f'Successfully downloaded and locally stored file: "{filename}"! (Size: {readable_file_size(downloaded_size)})'
except requests.HTTPError as e:
return f"Got an HTTP Error whilst trying to download file: {e}"
except Exception as e:

View File

@ -11,25 +11,25 @@ CFG = Config()
@command(
"clone_repository",
"Clone Repository",
'"repository_url": "<repository_url>", "clone_path": "<clone_path>"',
'"url": "<repository_url>", "clone_path": "<clone_path>"',
CFG.github_username and CFG.github_api_key,
"Configure github_username and github_api_key.",
)
@validate_url
def clone_repository(repository_url: str, clone_path: str) -> str:
def clone_repository(url: str, clone_path: str) -> str:
"""Clone a GitHub repository locally.
Args:
repository_url (str): The URL of the repository to clone.
url (str): The URL of the repository to clone.
clone_path (str): The path to clone the repository to.
Returns:
str: The result of the clone operation.
"""
split_url = repository_url.split("//")
split_url = url.split("//")
auth_repo_url = f"//{CFG.github_username}:{CFG.github_api_key}@".join(split_url)
try:
Repo.clone_from(auth_repo_url, clone_path)
return f"""Cloned {repository_url} to {clone_path}"""
Repo.clone_from(url=auth_repo_url, to_path=clone_path)
return f"""Cloned {url} to {clone_path}"""
except Exception as e:
return f"Error: {str(e)}"

View File

@ -9,6 +9,7 @@ from PIL import Image
from autogpt.commands.command import command
from autogpt.config import Config
from autogpt.logs import logger
CFG = Config()
@ -69,7 +70,7 @@ def generate_image_with_hf(prompt: str, filename: str) -> str:
)
image = Image.open(io.BytesIO(response.content))
print(f"Image Generated for prompt:{prompt}")
logger.info(f"Image Generated for prompt:{prompt}")
image.save(filename)
@ -91,7 +92,7 @@ def generate_image_with_dalle(prompt: str, filename: str, size: int) -> str:
# Check for supported image sizes
if size not in [256, 512, 1024]:
closest = min([256, 512, 1024], key=lambda x: abs(x - size))
print(
logger.info(
f"DALL-E only supports image sizes of 256x256, 512x512, or 1024x1024. Setting to {closest}, was {size}."
)
size = closest
@ -104,7 +105,7 @@ def generate_image_with_dalle(prompt: str, filename: str, size: int) -> str:
api_key=CFG.openai_api_key,
)
print(f"Image Generated for prompt:{prompt}")
logger.info(f"Image Generated for prompt:{prompt}")
image_data = b64decode(response["data"][0]["b64_json"])
@ -153,7 +154,7 @@ def generate_image_with_sd_webui(
},
)
print(f"Image Generated for prompt:{prompt}")
logger.info(f"Image Generated for prompt:{prompt}")
# Save the image to disk
response = response.json()

View File

@ -1,10 +1,12 @@
"""Web scraping commands using Playwright"""
from __future__ import annotations
from autogpt.logs import logger
try:
from playwright.sync_api import sync_playwright
except ImportError:
print(
logger.info(
"Playwright not installed. Please install it with 'pip install playwright' to use."
)
from bs4 import BeautifulSoup

View File

@ -7,7 +7,7 @@ from __future__ import annotations
import os
import platform
from pathlib import Path
from typing import Optional, Type
from typing import Any, Optional, Type
import distro
import yaml
@ -79,7 +79,12 @@ class AIConfig:
ai_name = config_params.get("ai_name", "")
ai_role = config_params.get("ai_role", "")
ai_goals = config_params.get("ai_goals", [])
ai_goals = [
str(goal).strip("{}").replace("'", "").replace('"', "")
if isinstance(goal, dict)
else str(goal)
for goal in config_params.get("ai_goals", [])
]
api_budget = config_params.get("api_budget", 0.0)
# type: Type[AIConfig]
return AIConfig(ai_name, ai_role, ai_goals, api_budget)

View File

@ -9,6 +9,7 @@ from typing import Optional
from autogpt.config import Config
from autogpt.json_utils.utilities import extract_char_position
from autogpt.logs import logger
CFG = Config()
@ -33,8 +34,7 @@ def fix_invalid_escape(json_to_load: str, error_message: str) -> str:
json.loads(json_to_load)
return json_to_load
except json.JSONDecodeError as e:
if CFG.debug_mode:
print("json loads error - fix invalid escape", e)
logger.debug("json loads error - fix invalid escape", e)
error_message = str(e)
return json_to_load
@ -98,13 +98,11 @@ def correct_json(json_to_load: str) -> str:
"""
try:
if CFG.debug_mode:
print("json", json_to_load)
logger.debug("json", json_to_load)
json.loads(json_to_load)
return json_to_load
except json.JSONDecodeError as e:
if CFG.debug_mode:
print("json loads error", e)
logger.debug("json loads error", e)
error_message = str(e)
if error_message.startswith("Invalid \\escape"):
json_to_load = fix_invalid_escape(json_to_load, error_message)
@ -116,8 +114,7 @@ def correct_json(json_to_load: str) -> str:
json.loads(json_to_load)
return json_to_load
except json.JSONDecodeError as e:
if CFG.debug_mode:
print("json loads error - add quotes", e)
logger.debug("json loads error - add quotes", e)
error_message = str(e)
if balanced_str := balance_braces(json_to_load):
return balanced_str

View File

@ -49,9 +49,8 @@ def validate_json(json_object: object, schema_name: str) -> dict | None:
for error in errors:
logger.error(f"Error: {error.message}")
return None
if CFG.debug_mode:
print("The JSON object is valid.")
else:
logger.debug("The JSON object is valid.")
return json_object

View File

@ -208,9 +208,8 @@ def chat_with_ai(
[create_chat_message("system", plugin_response)], model
)
if current_tokens_used + tokens_to_add > send_token_limit:
if cfg.debug_mode:
print("Plugin response too long, skipping:", plugin_response)
print("Plugins remaining at stop:", plugin_count - i)
logger.debug("Plugin response too long, skipping:", plugin_response)
logger.debug("Plugins remaining at stop:", plugin_count - i)
break
current_context.append(create_chat_message("system", plugin_response))
@ -250,5 +249,5 @@ def chat_with_ai(
return assistant_reply
except RateLimitError:
# TODO: When we switch to langchain, this is built in
print("Error: ", "API Rate Limit Reached. Waiting 10 seconds...")
logger.warn("Error: ", "API Rate Limit Reached. Waiting 10 seconds...")
time.sleep(10)

View File

@ -128,10 +128,9 @@ def create_chat_completion(
num_retries = 10
warned_user = False
if cfg.debug_mode:
print(
f"{Fore.GREEN}Creating chat completion with model {model}, temperature {temperature}, max_tokens {max_tokens}{Fore.RESET}"
)
logger.debug(
f"{Fore.GREEN}Creating chat completion with model {model}, temperature {temperature}, max_tokens {max_tokens}{Fore.RESET}"
)
for plugin in cfg.plugins:
if plugin.can_handle_chat_completion(
messages=messages,
@ -169,10 +168,9 @@ def create_chat_completion(
)
break
except RateLimitError:
if cfg.debug_mode:
print(
f"{Fore.RED}Error: ", f"Reached rate limit, passing...{Fore.RESET}"
)
logger.debug(
f"{Fore.RED}Error: ", f"Reached rate limit, passing...{Fore.RESET}"
)
if not warned_user:
logger.double_check(
f"Please double check that you have setup a {Fore.CYAN + Style.BRIGHT}PAID{Style.RESET_ALL} OpenAI API Account. "
@ -184,11 +182,10 @@ def create_chat_completion(
raise
if attempt == num_retries - 1:
raise
if cfg.debug_mode:
print(
f"{Fore.RED}Error: ",
f"API Bad gateway. Waiting {backoff} seconds...{Fore.RESET}",
)
logger.debug(
f"{Fore.RED}Error: ",
f"API Bad gateway. Waiting {backoff} seconds...{Fore.RESET}",
)
time.sleep(backoff)
if response is None:
logger.typewriter_log(

View File

@ -10,7 +10,6 @@ from colorama import Fore, Style
from autogpt.singleton import Singleton
from autogpt.speech import say_text
from autogpt.utils import send_chat_message_to_user
class Logger(metaclass=Singleton):
@ -83,8 +82,6 @@ class Logger(metaclass=Singleton):
if speak_text and self.speak_mode:
say_text(f"{title}. {content}")
send_chat_message_to_user(f"{title}. {content}")
if content:
if isinstance(content, list):
content = " ".join(content)
@ -103,6 +100,14 @@ class Logger(metaclass=Singleton):
):
self._log(title, title_color, message, logging.DEBUG)
def info(
self,
message,
title="",
title_color="",
):
self._log(title, title_color, message, logging.INFO)
def warn(
self,
message,
@ -114,11 +119,19 @@ class Logger(metaclass=Singleton):
def error(self, title, message=""):
self._log(title, Fore.RED, message, logging.ERROR)
def _log(self, title="", title_color="", message="", level=logging.INFO):
def _log(
self,
title: str = "",
title_color: str = "",
message: str = "",
level=logging.INFO,
):
if message:
if isinstance(message, list):
message = " ".join(message)
self.logger.log(level, message, extra={"title": title, "color": title_color})
self.logger.log(
level, message, extra={"title": str(title), "color": str(title_color)}
)
def set_level(self, level):
self.logger.setLevel(level)

View File

@ -1,3 +1,4 @@
from autogpt.logs import logger
from autogpt.memory.local import LocalCache
from autogpt.memory.no_memory import NoMemory
@ -10,7 +11,6 @@ try:
supported_memory.append("redis")
except ImportError:
# print("Redis not installed. Skipping import.")
RedisMemory = None
try:
@ -18,7 +18,6 @@ try:
supported_memory.append("pinecone")
except ImportError:
# print("Pinecone not installed. Skipping import.")
PineconeMemory = None
try:
@ -26,7 +25,6 @@ try:
supported_memory.append("weaviate")
except ImportError:
# print("Weaviate not installed. Skipping import.")
WeaviateMemory = None
try:
@ -34,7 +32,6 @@ try:
supported_memory.append("milvus")
except ImportError:
# print("pymilvus not installed. Skipping import.")
MilvusMemory = None
@ -42,7 +39,7 @@ def get_memory(cfg, init=False):
memory = None
if cfg.memory_backend == "pinecone":
if not PineconeMemory:
print(
logger.warn(
"Error: Pinecone is not installed. Please install pinecone"
" to use Pinecone as a memory backend."
)
@ -52,7 +49,7 @@ def get_memory(cfg, init=False):
memory.clear()
elif cfg.memory_backend == "redis":
if not RedisMemory:
print(
logger.warn(
"Error: Redis is not installed. Please install redis-py to"
" use Redis as a memory backend."
)
@ -60,7 +57,7 @@ def get_memory(cfg, init=False):
memory = RedisMemory(cfg)
elif cfg.memory_backend == "weaviate":
if not WeaviateMemory:
print(
logger.warn(
"Error: Weaviate is not installed. Please install weaviate-client to"
" use Weaviate as a memory backend."
)
@ -68,7 +65,7 @@ def get_memory(cfg, init=False):
memory = WeaviateMemory(cfg)
elif cfg.memory_backend == "milvus":
if not MilvusMemory:
print(
logger.warn(
"Error: pymilvus sdk is not installed."
"Please install pymilvus to use Milvus or Zilliz Cloud as memory backend."
)

View File

@ -73,7 +73,7 @@ class RedisMemory(MemoryProviderSingleton):
),
)
except Exception as e:
print("Error creating Redis search index: ", e)
logger.warn("Error creating Redis search index: ", e)
existing_vec_num = self.redis.get(f"{cfg.memory_index}-vec_num")
self.vec_num = int(existing_vec_num.decode("utf-8")) if existing_vec_num else 0
@ -145,7 +145,7 @@ class RedisMemory(MemoryProviderSingleton):
query, query_params={"vector": query_vector}
)
except Exception as e:
print("Error calling Redis search: ", e)
logger.warn("Error calling Redis search: ", e)
return None
return [result.data for result in results.docs]

View File

@ -4,6 +4,7 @@ from weaviate.embedded import EmbeddedOptions
from weaviate.util import generate_uuid5
from autogpt.llm import get_ada_embedding
from autogpt.logs import logger
from autogpt.memory.base import MemoryProviderSingleton
@ -35,7 +36,7 @@ class WeaviateMemory(MemoryProviderSingleton):
)
)
print(
logger.info(
f"Weaviate Embedded running on: {url} with persistence path: {cfg.weaviate_embedded_path}"
)
else:
@ -116,7 +117,7 @@ class WeaviateMemory(MemoryProviderSingleton):
return []
except Exception as err:
print(f"Unexpected error {err=}, {type(err)=}")
logger.warn(f"Unexpected error {err=}, {type(err)=}")
return []
def get_stats(self):

View File

@ -15,6 +15,7 @@ from auto_gpt_plugin_template import AutoGPTPluginTemplate
from openapi_python_client.cli import Config as OpenAPIConfig
from autogpt.config import Config
from autogpt.logs import logger
from autogpt.models.base_open_ai_plugin import BaseOpenAIPlugin
@ -33,11 +34,10 @@ def inspect_zip_for_modules(zip_path: str, debug: bool = False) -> list[str]:
with zipfile.ZipFile(zip_path, "r") as zfile:
for name in zfile.namelist():
if name.endswith("__init__.py"):
if debug:
print(f"Found module '{name}' in the zipfile at: {name}")
logger.debug(f"Found module '{name}' in the zipfile at: {name}")
result.append(name)
if debug and len(result) == 0:
print(f"Module '__init__.py' not found in the zipfile @ {zip_path}.")
if len(result) == 0:
logger.debug(f"Module '__init__.py' not found in the zipfile @ {zip_path}.")
return result
@ -71,12 +71,12 @@ def fetch_openai_plugins_manifest_and_spec(cfg: Config) -> dict:
if response.status_code == 200:
manifest = response.json()
if manifest["schema_version"] != "v1":
print(
logger.warn(
f"Unsupported manifest version: {manifest['schem_version']} for {url}"
)
continue
if manifest["api"]["type"] != "openapi":
print(
logger.warn(
f"Unsupported API type: {manifest['api']['type']} for {url}"
)
continue
@ -84,11 +84,13 @@ def fetch_openai_plugins_manifest_and_spec(cfg: Config) -> dict:
manifest, f"{openai_plugin_client_dir}/ai-plugin.json"
)
else:
print(f"Failed to fetch manifest for {url}: {response.status_code}")
logger.warn(
f"Failed to fetch manifest for {url}: {response.status_code}"
)
except requests.exceptions.RequestException as e:
print(f"Error while requesting manifest from {url}: {e}")
logger.warn(f"Error while requesting manifest from {url}: {e}")
else:
print(f"Manifest for {url} already exists")
logger.info(f"Manifest for {url} already exists")
manifest = json.load(open(f"{openai_plugin_client_dir}/ai-plugin.json"))
if not os.path.exists(f"{openai_plugin_client_dir}/openapi.json"):
openapi_spec = openapi_python_client._get_document(
@ -98,7 +100,7 @@ def fetch_openai_plugins_manifest_and_spec(cfg: Config) -> dict:
openapi_spec, f"{openai_plugin_client_dir}/openapi.json"
)
else:
print(f"OpenAPI spec for {url} already exists")
logger.info(f"OpenAPI spec for {url} already exists")
openapi_spec = json.load(open(f"{openai_plugin_client_dir}/openapi.json"))
manifests[url] = {"manifest": manifest, "openapi_spec": openapi_spec}
return manifests
@ -115,13 +117,13 @@ def create_directory_if_not_exists(directory_path: str) -> bool:
if not os.path.exists(directory_path):
try:
os.makedirs(directory_path)
print(f"Created directory: {directory_path}")
logger.debug(f"Created directory: {directory_path}")
return True
except OSError as e:
print(f"Error creating directory {directory_path}: {e}")
logger.warn(f"Error creating directory {directory_path}: {e}")
return False
else:
print(f"Directory {directory_path} already exists")
logger.info(f"Directory {directory_path} already exists")
return True
@ -159,7 +161,7 @@ def initialize_openai_plugins(
config=_config,
)
if client_results:
print(
logger.warn(
f"Error creating OpenAPI client: {client_results[0].header} \n"
f" details: {client_results[0].detail}"
)
@ -212,8 +214,7 @@ def scan_plugins(cfg: Config, debug: bool = False) -> List[AutoGPTPluginTemplate
for module in moduleList:
plugin = Path(plugin)
module = Path(module)
if debug:
print(f"Plugin: {plugin} Module: {module}")
logger.debug(f"Plugin: {plugin} Module: {module}")
zipped_package = zipimporter(str(plugin))
zipped_module = zipped_package.load_module(str(module.parent))
for key in dir(zipped_module):
@ -240,9 +241,9 @@ def scan_plugins(cfg: Config, debug: bool = False) -> List[AutoGPTPluginTemplate
loaded_plugins.append(plugin)
if loaded_plugins:
print(f"\nPlugins found: {len(loaded_plugins)}\n" "--------------------")
logger.info(f"\nPlugins found: {len(loaded_plugins)}\n" "--------------------")
for plugin in loaded_plugins:
print(f"{plugin._name}: {plugin._version} - {plugin._description}")
logger.info(f"{plugin._name}: {plugin._version} - {plugin._description}")
return loaded_plugins

View File

@ -6,6 +6,7 @@ from selenium.webdriver.remote.webdriver import WebDriver
from autogpt.config import Config
from autogpt.llm import count_message_tokens, create_chat_completion
from autogpt.logs import logger
from autogpt.memory import get_memory
CFG = Config()
@ -86,7 +87,7 @@ def summarize_text(
model = CFG.fast_llm_model
text_length = len(text)
print(f"Text length: {text_length} characters")
logger.info(f"Text length: {text_length} characters")
summaries = []
chunks = list(
@ -99,7 +100,7 @@ def summarize_text(
for i, chunk in enumerate(chunks):
if driver:
scroll_to_percentage(driver, scroll_ratio * i)
print(f"Adding chunk {i + 1} / {len(chunks)} to memory")
logger.info(f"Adding chunk {i + 1} / {len(chunks)} to memory")
memory_to_add = f"Source: {url}\n" f"Raw content part#{i + 1}: {chunk}"
@ -108,7 +109,7 @@ def summarize_text(
messages = [create_message(chunk, question)]
tokens_for_chunk = count_message_tokens(messages, model)
print(
logger.info(
f"Summarizing chunk {i + 1} / {len(chunks)} of length {len(chunk)} characters, or {tokens_for_chunk} tokens"
)
@ -117,7 +118,7 @@ def summarize_text(
messages=messages,
)
summaries.append(summary)
print(
logger.info(
f"Added chunk {i + 1} summary to memory, of length {len(summary)} characters"
)
@ -125,7 +126,7 @@ def summarize_text(
memory.add(memory_to_add)
print(f"Summarized {len(chunks)} chunks.")
logger.info(f"Summarized {len(chunks)} chunks.")
combined_summary = "\n".join(summaries)
messages = [create_message(combined_summary, question)]

View File

@ -119,7 +119,7 @@ def generate_aiconfig_manual() -> AIConfig:
"For example: \nIncrease net worth, Grow Twitter Account, Develop and manage"
" multiple businesses autonomously'",
)
print("Enter nothing to load defaults, enter nothing when finished.", flush=True)
logger.info("Enter nothing to load defaults, enter nothing when finished.")
ai_goals = []
for i in range(5):
ai_goal = utils.clean_input(f"{Fore.LIGHTBLUE_EX}Goal{Style.RESET_ALL} {i+1}: ")
@ -139,7 +139,7 @@ def generate_aiconfig_manual() -> AIConfig:
Fore.GREEN,
"For example: $1.50",
)
print("Enter nothing to let the AI run without monetary limit", flush=True)
logger.info("Enter nothing to let the AI run without monetary limit")
api_budget_input = utils.clean_input(
f"{Fore.LIGHTBLUE_EX}Budget{Style.RESET_ALL}: $"
)

View File

@ -69,6 +69,8 @@ class ElevenLabsSpeech(VoiceBase):
Returns:
bool: True if the request was successful, False otherwise
"""
from autogpt.logs import logger
tts_url = (
f"https://api.elevenlabs.io/v1/text-to-speech/{self._voices[voice_index]}"
)
@ -81,6 +83,6 @@ class ElevenLabsSpeech(VoiceBase):
os.remove("speech.mpeg")
return True
else:
print("Request failed with status code:", response.status_code)
print("Response content:", response.content)
logger.warn("Request failed with status code:", response.status_code)
logger.info("Response content:", response.content)
return False

View File

@ -5,27 +5,17 @@ import yaml
from colorama import Fore
from git.repo import Repo
from autogpt.logs import logger
# Use readline if available (for clean_input)
try:
import readline
except:
except ImportError:
pass
from autogpt.config import Config
def send_chat_message_to_user(report: str):
cfg = Config()
if not cfg.chat_messages_enabled:
return
for plugin in cfg.plugins:
if not hasattr(plugin, "can_handle_report"):
continue
if not plugin.can_handle_report():
continue
plugin.report(report)
def clean_input(prompt: str = "", talk=False):
try:
cfg = Config()
@ -58,12 +48,12 @@ def clean_input(prompt: str = "", talk=False):
return plugin_response
# ask for input, default when just pressing Enter is y
print("Asking user via keyboard...")
logger.info("Asking user via keyboard...")
answer = input(prompt)
return answer
except KeyboardInterrupt:
print("You interrupted Auto-GPT")
print("Quitting...")
logger.info("You interrupted Auto-GPT")
logger.info("Quitting...")
exit(0)

View File

@ -10,11 +10,14 @@ cfg = Config()
def configure_logging():
logging.basicConfig(
filename="log-ingestion.txt",
filemode="a",
format="%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s",
datefmt="%H:%M:%S",
level=logging.DEBUG,
handlers=[
logging.FileHandler(filename="log-ingestion.txt"),
logging.StreamHandler(),
],
)
return logging.getLogger("AutoGPT-Ingestion")
@ -26,12 +29,13 @@ def ingest_directory(directory, memory, args):
:param directory: The directory containing the files to ingest
:param memory: An object with an add() method to store the chunks in memory
"""
global logger
try:
files = search_files(directory)
for file in files:
ingest_file(file, memory, args.max_length, args.overlap)
except Exception as e:
print(f"Error while ingesting directory '{directory}': {str(e)}")
logger.error(f"Error while ingesting directory '{directory}': {str(e)}")
def main() -> None:
@ -69,24 +73,22 @@ def main() -> None:
# Initialize memory
memory = get_memory(cfg, init=args.init)
print("Using memory of type: " + memory.__class__.__name__)
logger.debug("Using memory of type: " + memory.__class__.__name__)
if args.file:
try:
ingest_file(args.file, memory, args.max_length, args.overlap)
print(f"File '{args.file}' ingested successfully.")
logger.info(f"File '{args.file}' ingested successfully.")
except Exception as e:
logger.error(f"Error while ingesting file '{args.file}': {str(e)}")
print(f"Error while ingesting file '{args.file}': {str(e)}")
elif args.dir:
try:
ingest_directory(args.dir, memory, args)
print(f"Directory '{args.dir}' ingested successfully.")
logger.info(f"Directory '{args.dir}' ingested successfully.")
except Exception as e:
logger.error(f"Error while ingesting directory '{args.dir}': {str(e)}")
print(f"Error while ingesting directory '{args.dir}': {str(e)}")
else:
print(
logger.warn(
"Please provide either a file path (--file) or a directory name (--dir)"
" inside the auto_gpt_workspace directory as input."
)

View File

@ -28,7 +28,7 @@ python -m pytest
:::shell
pytest --cov=autogpt --without-integration --without-slow-integration
## Runing the linter
## Running the linter
This project uses [flake8](https://flake8.pycqa.org/en/latest/) for linting.
We currently use the following rules: `E303,W293,W291,W292,E305,E231,E302`.

View File

@ -1,29 +0,0 @@
import os
import sys
import unittest
from bs4 import BeautifulSoup
sys.path.append(os.path.abspath("../scripts"))
from browse import extract_hyperlinks
class TestBrowseLinks(unittest.TestCase):
"""Unit tests for the browse module functions that extract hyperlinks."""
def test_extract_hyperlinks(self):
"""Test the extract_hyperlinks function with a simple HTML body."""
body = """
<body>
<a href="https://google.com">Google</a>
<a href="foo.html">Foo</a>
<div>Some other crap</div>
</body>
"""
soup = BeautifulSoup(body, "html.parser")
links = extract_hyperlinks(soup, "http://example.com")
self.assertEqual(
links,
[("Google", "https://google.com"), ("Foo", "http://example.com/foo.html")],
)

View File

@ -3,7 +3,7 @@ import pytest
from autogpt.agent import Agent
from autogpt.commands.command import CommandRegistry
from autogpt.config import AIConfig, Config
from autogpt.memory import NoMemory, get_memory
from autogpt.memory import LocalCache, NoMemory, get_memory
from autogpt.prompts.prompt import DEFAULT_TRIGGERING_PROMPT
from autogpt.workspace import Workspace
@ -19,6 +19,16 @@ def agent_test_config(config: Config):
config.set_temperature(was_temperature)
@pytest.fixture
def memory_local_cache(agent_test_config: Config):
was_memory_backend = agent_test_config.memory_backend
agent_test_config.set_memory_backend("local_cache")
yield get_memory(agent_test_config, init=True)
agent_test_config.set_memory_backend(was_memory_backend)
@pytest.fixture
def memory_none(agent_test_config: Config):
was_memory_backend = agent_test_config.memory_backend
@ -101,3 +111,38 @@ def writer_agent(agent_test_config, memory_none: NoMemory, workspace: Workspace)
)
return agent
@pytest.fixture
def memory_management_agent(
agent_test_config, memory_local_cache, workspace: Workspace
):
command_registry = CommandRegistry()
command_registry.import_commands("autogpt.commands.file_operations")
command_registry.import_commands("autogpt.app")
ai_config = AIConfig(
ai_name="Follow-Instructions-GPT",
ai_role="an AI designed to read the instructions_1.txt file using the read_file method and follow the instructions in the file.",
ai_goals=[
"Use the command read_file to read the instructions_1.txt file",
"Follow the instructions in the instructions_1.txt file",
],
)
ai_config.command_registry = command_registry
system_prompt = ai_config.construct_full_prompt()
agent = Agent(
ai_name="",
memory=memory_local_cache,
full_message_history=[],
command_registry=command_registry,
config=ai_config,
next_action_count=0,
system_prompt=system_prompt,
triggering_prompt=DEFAULT_TRIGGERING_PROMPT,
workspace_directory=workspace.root,
)
return agent

View File

@ -332,4 +332,174 @@ interactions:
status:
code: 200
message: OK
- request:
body: '{"input": ["Assistant Reply: { \"thoughts\": { \"text\": \"thoughts\", \"reasoning\":
\"reasoning\", \"plan\": \"plan\", \"criticism\": \"criticism\", \"speak\":
\"speak\" }, \"command\": { \"name\": \"google\", \"args\":
{ \"query\": \"google_query\" } } } Result: None Human
Feedback:Command Result: Important Information."], "model": "text-embedding-ada-002",
"encoding_format": "base64"}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '483'
Content-Type:
- application/json
method: POST
uri: https://api.openai.com/v1/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1R6WxOyurbl+/4Vq9YrvUtEJWG9IfeLJihesKurCxC5iSCQBHLq/Pcu/E6d7n7x
AfFCMuaYY4yZ//jXX3/93SZVlo5///PX3+9yGP/+H8u1ZzzGf//z1//8119//fXXf/xe/787sybJ
ns/yk/9u/71Zfp7Z9Pc/f4n/feX/3vTPX3/fopdD0flZVNPUPC8yT+sT3gt8pY/uh6XKIzl8CTzP
74Rhggh4m3hNHTU6VhN7kC18XyqDotgb+zmfIhk+DKen3kq1uXg3HwJceS8R25JtA15/gkgZ7UnA
TptGFXfomsGpRFfq7XDr94G9VxVzjTbUY1RLlu+XQXJ53LE261NCuyg4w6QiDZHiXKrKTRMg+KJl
RuBWrkPyiQQGU2j55ASHhnM1HnIomOyK/UP46VlvDDGM50TFfqDyiqUNOyuv9Lahhye6hzPnWQTX
0DngC2N2zxHqDMiu8I6RNGxBvy4uKRxflxRn7lr0yfd0G6D9kXSMwuTT8yG7s13IOgHbO5FzPiY1
gUPXrSiGmtF3X3RSYWolBLEi6qohbVigrDwhJErOdX924KlWtIgcqepU34SIL3sLt1W6RYA/hpBd
XlYN7qJ2JXxb0rAtJOBAr1hv0EbURZ88Qa3CO68k7Hjw40+nMUeKEphbspncgg9QLSM4xqs3Vldq
2Q+N4auwuBY11W3fqDYwfjLZQOOZ7vX+0k8nZT9AZH0YdYzjPpl1ZEiwdpQNUjYbLZwf5gZBr0EE
yXfb1ScRHBFEb4QQUJTGZ6etZ0E8ZQeq7nDJSSh3AVTF3UR1cQQ9f/Rghrt9s8HqIbgl3dGzIazi
zZaqvQjC6fM+11AAnUH9G90l8yRLGdRbsSJSo0nhDx874yTL2DtEVcjelmDJT1utcDaLec/ZfmvA
q9po1EykIZnDzhRhfMgDnJovE4xm6NTQEsIj+azevJpv+HSAard6oM333erTls0GWGnUwK7DN9W4
G0wLNifhjI3tM+x5FRdQcTV5Qq0ajRV7R48cesn5RtYAv8NJj9sWyhZbY0MqPsm8CzADv/U/lPtJ
58q9HGQeHWO0RpHaSyvCNeW9eiUYqXcnmd9lxIAZrwKkMA2B6f18OHA9SAoBtI56LhFPlsVTOC37
U4SDaHcGkG+WgS1SQp9kzrlUhq5fYZWlnc+d/BLAfZhjanrVwOe5oRA+SHTCqLmvknnclNqqt8SC
PrEE+Dhf1Bk2gD6wE+GGz1BKLEj6JsbHfez5bGUypnjl7Ua9ZwX0Sex7AhJpeyTysy8BewRWBpUU
vwhJd2FPuDHJ8Ni+Juyvdmd/krtYkyV7ulJNqO468UPYwMo4R3SfayEgD3vnycA/a9R7H7Vqs5dg
Bm/9l1L9/IbVpE4lgsVoaTjQFKlqjuMjg7f0nqMdqu/JFL/cFFTxekujyH75v/oGIJ4q6th2mHDz
+4kg/OgFKRa804MxEvg9zh49qmmt840Xy2B0zk9qW49rwkmbOFAJ6js2d/6pkqxSJNAs9YAoJ6r3
kzp9EVhfZwGrRdT1k51oGiw0KaWOcDcr8aoEKVzwgrVCf3N2TcNSMYm3wQi1Rz6JwERwT9071a/p
N6GMpY2MOqPBL1xs9bFwijOM5Rbj+4m1nKNMa2C9P9rk/TG3Pnt9DwN0b1ZEfXx89Pw5PD14LjSb
yDa79mx3r6Bsf0Qd8chnCZ3dqYSZc3FJMSeFzp6lHgAxkjC1nncjHGCgy5CBtUXtjXnkE1lFIjSb
yMbJBuX6JB7aARhXfiav/vjWp1XHY8ir9kQtfPLAdNzwmyy9wQXJFLbJYH0DWV7qjXqm2PXvfDgF
UIZ9jTjTuoocTm4OdkOFyMZ4dsngzucblDo+4MN12FSD7YYQipvvih78wOxJJq1UmCm5TdXhc03m
/KWk8NrnD2qiSK1Y9Vx9wRoRAXt3u/PnPAgh9ByLUkshVTIJxz6TrbI1sakIfcIOm5xAaY0qatw8
J2HnS2wASyqf1Oi9kPPrVhXhFHfSgvfE5/k1rJXUehBqrjOz38jn9Ca3uxWhe20kFWvRqoRSLECs
CyHWqcwfZ+iO3p2sG/us98q9JPC7YgVF/u7DZ8N/zMBxpZii4/fDl342w+YxaljXbwFgZeh7snLJ
KMY38wQ2xf5ogU14KxEzh7QfLRqVcH1lAjZipfQndJPiHx4w/kSnkHu7yVHgtNphu2GXZFY/6gVe
lCimzjXPOVvpkgh2R5LRvQwswPZP14Af/J6wrl7uOnNuWgzkx0vBfgfUipw0N4LwYLvYzldiz/N6
bUH3ARn1TXoE8+68J4pyjCk2Nd32e+IGDsw3jzeNEncLSK7OKRDM+UpxbyrJV+G5BovhXWEru36T
WX1bMTQPTo5NfT/qfE4tA0p3o6aHVef5ZK8HN3jt9zLe36ioT+uWfeGzEABGluPobGKrA6wvMcH7
9GqD4RX3B3BzvxE+HmXK5yGJLVlzYwEfsVD1VC4UCU6NMWLrLEh85CwgCtiCErvtgVWt8662CkPy
HW220hGw2yNP4b19Z+RtstDnJWEZHJPMoOb82XDii1MOtnPYkt0pVMJB6FoGX5K9wobmlLwvj6AE
76AdcLgtcULWaSrCQGq93//3OV3vG8iFuqX7jvOeDF/ewMIaRGp06APGBDxi+MkOGGuf2e8JausU
quQWYLyJJT6sdEEEXzMH+IilBLBG7FKoSdIB47TzK/4ZX7J8bJ8T3UvOUZ/XIzsr95paGEXWA/Dp
UNfwZGYyVY8oDbnnngcZefCD1dqmVafvqhaEN2Ri119PITkmkgZHVUfY2vf3ZNA+6xo4JtTwq6qU
P3gBjzL40iDuqorI2daD/WnekTk7RDrHj2sDz+28IcL+SkJO7NsBiunwodqqqwFd9AJY+IKsiHzS
6VtcCZAe64nMq67m/VWytsr3yDycLHphoNtXAOyAGdT8mJE+m1Y9K5aRW/R4j5Jq4UNBeU6Bt/QD
Ho5XJrYQN/qVwPbtcdFD3xvklTuTebN6huyqRCmkFVSp8RxafT6dShk8DK/HnpRrfp9LQQmOg9hS
zXicQbeK7hDGssvQSrXVZD3Z8Q1UzZliJznlPW9ldIH6cevTxM+PlfTZgQFe4l1NUZ2EIa3iQgC9
9vwifo9uIV+d1wN0+LukjisUPnXy9AzyTfJGz12rhRsv+Zwh/5QddS3jVJEvbRtwFY4Fja/6OpkN
/8RgkcOEquWN9ryYqhKa9tSRKcovPquemy/YyuWGuhp+Av7a6Q0kJj5QdKhjn0MQE3AKkvOfz7M5
K1vF3mdrJFbtxR/vMtOU7bFxkLD4iW9OMwi6NKsRsPsdmL5wXYI6KG/YfzQfn83K+6vUczki/s4o
6OazJcK7NlBq4Ab1FMZXBndPvCK7avAq3s/NGQYX94JE1DoVHQ86gnorVWitKrtw8gwnBZMInngv
tGdAUeY10E6TA2EGkXpuRbEE1fLQIUF/lDqtvnomE9euETDpkfO19kiBgI4SNaIdCZlyDCQ4Cv6B
VGveJQufDUr9MSVq80DW5wM75NB9v3dk/epVf1P5TgYPfaVR1RxgNY1zGUH3jFTyDty8mstdfIEn
93omKVKmnt22fQZKH+3JdtFXvVa+BTB8nYyej6smIQLeavBPP86uXjgDr/hC13dU+uPb8Zq1FsRM
GSl6rorkexxPKWisKqF+EYZ6W9HEgJ8zf2C0PC/fWzcV5quviPXvye03fcAOskbnA6psHQL+rQz2
01dYj7Ghc7ZnhrL0M7wvnKKnWfc1YBz5D4zI3uK8liYZuhZ3yXolbxKiWnoEvcm3iLTxumoQdt4Z
yKh4Yzu9lH1XWp8bXNYXY30/h81aOTEQnqsV9fy3m7CWwgyGxRrhoxYFPqnfvgiFDRvoLclg9X1d
VajYwWwgmB2UhFy1coaege5k3uzvCdOvnQrXloCwxa9rPudTICvZ95KjMeiuYMr0eAupOzywfau0
iknnaw1HmwuLf+l0XpJtKluqi7HabWky3Qa73Sr0YVGNXvqEi+tSgEUtcuq/HQu0YeGUMKmGhh4K
3dene3epYXnzHti5ZRYQv+4pVqbGGolSwHVS39csUqrkcscnMxWr+Tg+Ujjf43B5XqYv+BTBhMeM
rJ3XQ59zeoNQf1QXtE1Oas/w6uvB8+PVEvDMViEr3i8ChgJgqn7cLuS1laSy3PID9jZZ69Ov4c7A
V7MrPSq5XI07QBoonk4T9fvNoZrCyzAAKNg5PeZc1zfppDkQIWmF1lc5D6crg1+QEbTFqBiO4eB/
5zO8CoOK789zW01FpLGfHqUvTR9ClkonBuWnJJLVTGvA3NMzgsAPNDQnZ5NvhlH1lMva9ala27if
b8U4w5dwRxhd0L6X/HlVA/O9a7G+y9fJbOf7r3w9AICNXfKouAtrBMPYelJPUxJAgEMH8A6+w8/v
6iTqOwd2VVkTZR9//blB3hl0fXghEzJKfURrJ4DgBnwiJsDRx/M2HaBFFIEiDxSgrZNDA/eVzjC+
2j5Y+9ktg6e03KGJ3ceEX5sxAj2fAuqxj9yzraeUYNH/2L9OPBykYmWAvhZybNpiwydDlFoIJmem
etFBfXxePxl8SeYK+9tV7lN19ylhaW08/OO7yQsLAQqrIqWaH+Qhf+ttJL+PT4NmdcLDrjWuLZS3
VoL3F+74U1R/Gnh+Si/qnkIlIdnnWcLr3DywRm5myNMi/8Ky4CX2x/ZQzcXQbyEP0i8+2n7Haez4
M4Ty0aHGuioSlsR7SdH2X0Td3SvQKUKFofz46YteST9rdD8r7vuzI1BvMp+l0mOG2zTe0r0VxxWr
/d6Ac7MTqd19Sp+VetEqb34XqRraFZ+f/rGBw9qQ8D7UHH/hx/inf5d6aQBrg10GR8E9/MmP6PMY
e5BI+Uz44vfyzctQ4Qd/JrLkJ/1M2R4CdR0Fv/WrJrR2znCpL6qNwaYf7N0cw0uZ6Wi3ewX+FJyC
M2wQ+yJZUxI+tbOrwsW/UJfv0pD89OAFKweyWfKb2V4ZX7Dw4+In8op9wroEBtycSOevp4QDUgfw
tK9LqhaRWzEY+FvI0PZOnyda9VMVPmdwRlWAJNq6YP20TAFKxKko3ptW8k2FlwX53k/QuoNvTsHL
Y3CXJx8EorbwGWbqF4p7FuDjwh+0e68kqCZOR7PFH9DKRTl8m+RC91apJZLjAwdepWzCtv7FiYhX
XwfGezPG1Pk0/vAgwUVxt1OOzZ9eDbMKwuzu7LAty/uKH9aGB8LCe1L19XH7GblFCpf+SJ01jXzy
MFcHeHkFCdmF98mfrmqG/uh999D6yXrlbSOwZtobbR/HAYys125Qr6GPo6P0SHiIvQyGt4NJ1be5
rsgNPw5gdZV7ii2p8VnQJy1Q3PJOVoPw9kdlSjLgPIcZ+3TIQ17sTQNOZ2CRpf/3w7e9xPB2LBlp
9fiTzAA4Bvwo6mrJD8uEb+/uDdqCrJFNFqCKb7qrDFfaaGBLp76+IRuxVcJzsSJzzU5g0eslgNKF
Ud3WU8DKcmjBJXTEBY8fzk5t3gBzZ2P882stuxWHH38TLo5JP2fSSgMfBiIEPe8O6OG298BJmnMC
+09djY8ClnCvXlp6cdeIr6P6U//05sLXjr7x3DOB7pbnJFj0Qz8pvgZ+eaDdFmLCrY94UWjAHtiL
tq4+tcazBbt6zqjx2FySce2RGTBtZtRY+I1rM07Bc6fJSIi9Y8Wcdy/DpX6R/D5qPTtfzobyW8/5
TTacdclbgB7evAgrb7iiJWEpzMhhS8JtSZORZKEMxWcSoQ/Y2n2VFnkLzVgJ6GEKIKCwW523Gyf2
fn7Cn9/B+gYvShxjx9Vf/XSXmQqgmu2xO6y+Cdsn2IPkgyuqM83tZydJ/2v/+cOVwkV/WErIeoFc
jXn02TYNINxevg6CU1RXk7wFOXgFOCDi4qemqClyeAR9hC3adqDwwk6A+BsfsHk2h55stgMDzenF
MarY3herIDDgq28tmsnFoVry7QHUqZtR20OdPifqyVA0ehoJS98YTMP6mQGLrAR0nboTEPW3V+6e
O1XG6g5rnMBm10Dn+qqoeTYPPVj6Mdwk5hmbxjzqTUKUGrKrcEfwzvpkxNpHhhGCA6lNbe0Pevgx
4LGFAdWliSZTs/l4MBqnlCIlOFd9/EEzIJcyIehdFPq8P+9EyE6fHCORDWDG710E05P4xv5bfenf
X5658DkR7Z1WLev7BdZF/1DD2bSAd5vkDIon41hzD0PFSTS1ytKPiOhsWj5/ImkGwcW/0IPeCDqf
xiJXyt1Fxd7FxOG08li8e1XRhp7bpwLI5TYFUEubN9aDzEho+bxqsO6zkShouwaMNRqBi/6nP7wv
eaMKNcoOCBQh19n67jVQSY8vNITgXv34E17lq4s976Mns7nREfzVozU0gS9mQnIAPz1gy/ODj5E5
NPIzs0oyPZqCT6SwIOi3no3y/Aw4rT9BrAD7Df/U2+K/blsihCWiggs5D7NegCczlbHpvhveCccq
hc5GeGC8+DeedaUFsyZzyIL/amMIyhZsmtz95U096y/m9sc32MfXIpzNmxXALmoOhOAm5Fy8EA1Y
nyNa8Ff47PZoU6Aaxhcb4LLXf35febxsjYjNa883lYtKeAtIROZKufNf3gTAbefjfbPbJ5K9OrRQ
aJ9P6q92s88jQkR5yQvw8R6BaoLnIIP4EByxrRQvPgHzq0Hqkgda3/W5X28upacseTJ2dvViR+s4
Anh9qbEZiXNPkXKsf/MOsi15Hs6K7jagTTyBVBAn4ThqPpRHIzKJuORl618e4e2iKwFLvstPpm1A
4po1mvevvGdsPRx+9T72XrwCVMqKCJYjcKn2RLM+7tK+hukTHn75lT7fM5lAK6lNjM+RCUTMnC8M
+mOI1den63nQHLRfP8JPciI//MdgiDcYrQwlq9jZ2DZQ2Z8cNP346LtXEOzcs4I9MSXhSFaBBC5f
xKl/2+x1vpGnG7gGZkXNtLNC8XZv8p+/wE5kr/xh28sZlAstxX7t5aD9uo8Ymm/QUj22YciNobvJ
y/NgVZEvYH7nmQRHIzaxdcAnf7qcpi/45W+4jP2EqS/owB24CtQ+grXfit3dAc6o7ukyvwIUf3ca
XPQD1cV1Fc7+O9LgE/GQ7Epi9O/Uk6FsPLov2XkbPxlfwijJhgVLmmrt1v+jhy93/UAWfusnn+5k
uBeyBu/v6z1YL3iQf/m0q2EF8LRov9A5fXw0XMip3wj65QB3/IPQz9/x80nJ5R9fRsFo6zzEWgbt
z70m4rJf7G1JFqw/toRdcbglE0FyDJEnfOiiRxPuufEA3+CjU5X0nc5uzlEFnJ4e2JjI2LPEIRE0
toGz5CmlTw77XFV0UPXUaF4Fnwxp28C2sW8Ur7Mvnw33LsFfvnPrNl99qsTzAOzPtcY6vFf6/KrL
VFnyanr81hqXztnppqDMQfSy9Asaf6wZtmGE/sz/eHx/n5W2RALWssNWn9nhAQFODAUJs5hXjN0K
pHi7+EqPxiVNxtXuIsMXzTMkZus4XPqTAIVnZaJ5MvtwEgaSysVoaPiw8P3PH8BcEHTsxP4ZzOte
uoFJcQZqvB/in3xFLnc3lTqfTqhm81MMP/7A2Pk0+h9/u/Q/spXGTG8Pm/bPfA6j74H7LdCfGSw1
YUYf67EOJ+MKWji/fJ2i5v5KFjyKwK/8J5mcsEx++wUWvqUH+GHh3IVRC08SywkQwMFn1WtqYNKe
KD7KTRvyylfTP/MziyVLPOCPX+iIxp5Gy/xrWPIjeNnlGtUuyTYca/oeYHTTBvQVtAIsec0ByJr8
xD+8MamaNFCez3uKHodPz9GBer/8Eu1OyVuf78qaAHHTrvAprm1Oln6m7JPzCmOAvWpCdirDjb3r
qbbot0XfB7DP3x3VJrNPFr5BP71O/Vp76AR09Re2hxvCep13YB5cqVWM2HOxpykADPpby8GSj5Lx
KFPQGaLQ/vILROvbvR9Xu1SG7/39iarFn/LAdlWIDU2gP30+uRYo5fal38gUqCScwNUv5V0gW9Sp
6zxc+t8AHFPQsJnf5nAUSB4rzOoc6l68Xh/HSpWhDARO7cndg01EGhGyUbthLQeZz1dq58GVSBOy
zFNC+tuPxf+h0yOTdfYaNjNcdcYZe1tXDtn+ubeUhhknetklu/4rnvILNA9eTo3mLvvvG9k3yt+/
UwH/+a+//vpfvxMGTfvM3svBgDGbxn//91GBf8fP+N+iKP2bSn9OIpAhzrO///mvQwh/d33bdOP/
Hts6+wx///OXIv85bvD32I7x+/+9/q/l1/7zX/8HAAD//wMAPe/DkOMgAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7bfdedf56918cfbc-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sun, 30 Apr 2023 07:04:15 GMT
Server:
- cloudflare
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-organization:
- user-adtx4fhfg1qsiyzdoaxciooj
openai-processing-ms:
- '25'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '3000'
x-ratelimit-remaining-requests:
- '2999'
x-ratelimit-reset-requests:
- 20ms
x-request-id:
- f2850337441001a8e5bd70bacb4dede8
status:
code: 200
message: OK
version: 1

View File

View File

@ -0,0 +1,17 @@
import pytest
def pytest_addoption(parser):
parser.addoption(
"--level", action="store", default=None, type=int, help="Specify test level"
)
def pytest_configure(config):
config.option.level = config.getoption("--level")
@pytest.fixture
def user_selected_level(request) -> int:
## used for challenges in the goal oriented tests
return request.config.option.level

View File

@ -0,0 +1,771 @@
interactions:
- request:
body: '{"model": "gpt-3.5-turbo", "messages": [{"role": "system", "content": "You
are Follow-Instructions-GPT, an AI designed to read the instructions_1.txt file
using the read_file method and follow the instructions in the file.\nYour decisions
must always be made independently without seeking user assistance. Play to your
strengths as an LLM and pursue simple strategies with no legal complications.\n\nGOALS:\n\n1.
Use the command read_file to read the instructions_1.txt file\n2. Follow the
instructions in the instructions_1.txt file\n\n\nConstraints:\n1. ~4000 word
limit for short term memory. Your short term memory is short, so immediately
save important information to files.\n2. If you are unsure how you previously
did something or want to recall past events, thinking about similar events will
help you remember.\n3. No user assistance\n4. Exclusively use the commands listed
in double quotes e.g. \"command name\"\n\nCommands:\n1. append_to_file: Append
to file, args: \"filename\": \"<filename>\", \"text\": \"<text>\"\n2. delete_file:
Delete file, args: \"filename\": \"<filename>\"\n3. read_file: Read file, args:
\"filename\": \"<filename>\"\n4. search_files: Search Files, args: \"directory\":
\"<directory>\"\n5. write_to_file: Write to file, args: \"filename\": \"<filename>\",
\"text\": \"<text>\"\n6. delete_agent: Delete GPT Agent, args: \"key\": \"<key>\"\n7.
get_hyperlinks: Get text summary, args: \"url\": \"<url>\"\n8. get_text_summary:
Get text summary, args: \"url\": \"<url>\", \"question\": \"<question>\"\n9.
list_agents: List GPT Agents, args: () -> str\n10. message_agent: Message GPT
Agent, args: \"key\": \"<key>\", \"message\": \"<message>\"\n11. start_agent:
Start GPT Agent, args: \"name\": \"<name>\", \"task\": \"<short_task_desc>\",
\"prompt\": \"<prompt>\"\n12. Task Complete (Shutdown): \"task_complete\", args:
\"reason\": \"<reason>\"\n\nResources:\n1. Internet access for searches and
information gathering.\n2. Long Term memory management.\n3. GPT-3.5 powered
Agents for delegation of simple tasks.\n4. File output.\n\nPerformance Evaluation:\n1.
Continuously review and analyze your actions to ensure you are performing to
the best of your abilities.\n2. Constructively self-criticize your big-picture
behavior constantly.\n3. Reflect on past decisions and strategies to refine
your approach.\n4. Every command has a cost, so be smart and efficient. Aim
to complete tasks in the least number of steps.\n5. Write all code to a file.\n\nYou
should only respond in JSON format as described below \nResponse Format: \n{\n \"thoughts\":
{\n \"text\": \"thought\",\n \"reasoning\": \"reasoning\",\n \"plan\":
\"- short bulleted\\n- list that conveys\\n- long-term plan\",\n \"criticism\":
\"constructive self-criticism\",\n \"speak\": \"thoughts summary to say
to user\"\n },\n \"command\": {\n \"name\": \"command name\",\n \"args\":
{\n \"arg name\": \"value\"\n }\n }\n} \nEnsure the response
can be parsed by Python json.loads"}, {"role": "system", "content": "The current
time and date is Tue Jan 01 00:00:00 2000"}, {"role": "user", "content": "Determine
which next command to use, and respond using the format specified above:"}],
"temperature": 0, "max_tokens": 2766}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '3294'
Content-Type:
- application/json
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4RSS2/aQBC+91eM5mwjCI8g31B6yaFSpTaHtq7Qsh7sLevd1c5YQBH/vTK2SQRR
ev3m8T1mTmgKzFBXSnQdbPq4avy3xY/xbLY6fnkKT+rrvvn8aJYvP3flAhP0mz+kpZ8YaV8HS2K8
wwR1JCVUYDZZLB+W08X4YZZg7QuymGEZJJ2O5qk0cePT8XQ8wQQbViVhdsIQfR1kLX5HjjF7nE4S
fN19xSfzWYLiRdkrtFzOzwnqyhtNjNmvE9bEw9roLWGGitmwKCetSO+EXGvglDsAgByl8k1ZCeeY
QQ/2BTpIC+b4DFz5xhbAoqLA5giRVGFcCVIRGMcSG91K5fVkJAeBrbEEDQ8dbff6gmlf18oVoxyT
t1SRFHtnXNnxfa8ItiayAAsFMAzioXEFxdZHcccKAyiKdwxSKQFHVLRjG4JAcetjTXe0wSrXMabw
wvS+1nZJC37kNc9dCiun7PEvva+uIKFYG9eVHR06b3yjSEcjRhuuh+AHG+S4idRZe/4wi/5xyB5h
Q1sfCUL0muhyr72RCpQ7dknd5sGB1G5g3htr/3/wi/1Rjt2aczJ8VR/e3VM5VVPHcA36RoSK5e0v
doW293X8/hKDiIuQXk/uznhOcGuc4WrdvRlmyOIDJmhcQQfMxuff50//AAAA//8DACSqIf4KBAAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7bfdb77eec9416f9-SJC
Cache-Control:
- no-cache, must-revalidate
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sun, 30 Apr 2023 06:27:12 GMT
Server:
- cloudflare
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-model:
- gpt-3.5-turbo-0301
openai-organization:
- user-adtx4fhfg1qsiyzdoaxciooj
openai-processing-ms:
- '8377'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '3500'
x-ratelimit-limit-tokens:
- '90000'
x-ratelimit-remaining-requests:
- '3499'
x-ratelimit-remaining-tokens:
- '86494'
x-ratelimit-reset-requests:
- 17ms
x-ratelimit-reset-tokens:
- 2.337s
x-request-id:
- 75084ec318eb8fbda968c3f79a242ee3
status:
code: 200
message: OK
- request:
body: '{"model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": "Your
task is to create a concise running summary of actions and information results
in the provided text, focusing on key and potentially important information
to remember.\n\n\nYou will receive the current summary and the latest development.
Combine them, adding relevant key information from the latest development in
1st person past tense and keeping the summary concise.\n\nSummary So Far:\n\"\"\"\nI
was created.\n\"\"\"\n\nLatest Development:\n\"\"\"\nNothing new happened.\n\"\"\"\n"}],
"temperature": 0, "max_tokens": null}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '600'
Content-Type:
- application/json
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA0SOMU/DMBQGd36F9c1OlBBaWm8wIGCMgAWhyrVfE0PiZ8WvKqjKf0eVCl1PutMd
ETwMXG/FjWkobu/27OsfeXmUw1v7sEtd67rn1/Z+eVOvoMHbT3JyNkrHYxpIAkdouImskIepl6vr
VbOsmoXGyJ4GGHRJiqZcFLKftlxUTVVDY59tRzBHpInHJBvhL4oZZl1rXNIXrCEsdvgHdVXNGq7n
4CjDvB8xUv5rTjwQDGzOIYuNcjrkKBRP90/qYLM6HysbvYosfYidinRQvc2qtylRJF9i1tiFGHK/
mchmjjDIwgkaIXr6hqnmj/nqFwAA//8DABWtlxRJAQAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7bfdb7c3796916f9-SJC
Cache-Control:
- no-cache, must-revalidate
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sun, 30 Apr 2023 06:27:16 GMT
Server:
- cloudflare
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-model:
- gpt-3.5-turbo-0301
openai-organization:
- user-adtx4fhfg1qsiyzdoaxciooj
openai-processing-ms:
- '948'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '3500'
x-ratelimit-limit-tokens:
- '90000'
x-ratelimit-remaining-requests:
- '3499'
x-ratelimit-remaining-tokens:
- '89866'
x-ratelimit-reset-requests:
- 17ms
x-ratelimit-reset-tokens:
- 88ms
x-request-id:
- e02c6c27229229ec129826db88fa9f23
status:
code: 200
message: OK
- request:
body: '{"model": "gpt-3.5-turbo", "messages": [{"role": "system", "content": "You
are Follow-Instructions-GPT, an AI designed to read the instructions_1.txt file
using the read_file method and follow the instructions in the file.\nYour decisions
must always be made independently without seeking user assistance. Play to your
strengths as an LLM and pursue simple strategies with no legal complications.\n\nGOALS:\n\n1.
Use the command read_file to read the instructions_1.txt file\n2. Follow the
instructions in the instructions_1.txt file\n\n\nConstraints:\n1. ~4000 word
limit for short term memory. Your short term memory is short, so immediately
save important information to files.\n2. If you are unsure how you previously
did something or want to recall past events, thinking about similar events will
help you remember.\n3. No user assistance\n4. Exclusively use the commands listed
in double quotes e.g. \"command name\"\n\nCommands:\n1. append_to_file: Append
to file, args: \"filename\": \"<filename>\", \"text\": \"<text>\"\n2. delete_file:
Delete file, args: \"filename\": \"<filename>\"\n3. read_file: Read file, args:
\"filename\": \"<filename>\"\n4. search_files: Search Files, args: \"directory\":
\"<directory>\"\n5. write_to_file: Write to file, args: \"filename\": \"<filename>\",
\"text\": \"<text>\"\n6. delete_agent: Delete GPT Agent, args: \"key\": \"<key>\"\n7.
get_hyperlinks: Get text summary, args: \"url\": \"<url>\"\n8. get_text_summary:
Get text summary, args: \"url\": \"<url>\", \"question\": \"<question>\"\n9.
list_agents: List GPT Agents, args: () -> str\n10. message_agent: Message GPT
Agent, args: \"key\": \"<key>\", \"message\": \"<message>\"\n11. start_agent:
Start GPT Agent, args: \"name\": \"<name>\", \"task\": \"<short_task_desc>\",
\"prompt\": \"<prompt>\"\n12. Task Complete (Shutdown): \"task_complete\", args:
\"reason\": \"<reason>\"\n\nResources:\n1. Internet access for searches and
information gathering.\n2. Long Term memory management.\n3. GPT-3.5 powered
Agents for delegation of simple tasks.\n4. File output.\n\nPerformance Evaluation:\n1.
Continuously review and analyze your actions to ensure you are performing to
the best of your abilities.\n2. Constructively self-criticize your big-picture
behavior constantly.\n3. Reflect on past decisions and strategies to refine
your approach.\n4. Every command has a cost, so be smart and efficient. Aim
to complete tasks in the least number of steps.\n5. Write all code to a file.\n\nYou
should only respond in JSON format as described below \nResponse Format: \n{\n \"thoughts\":
{\n \"text\": \"thought\",\n \"reasoning\": \"reasoning\",\n \"plan\":
\"- short bulleted\\n- list that conveys\\n- long-term plan\",\n \"criticism\":
\"constructive self-criticism\",\n \"speak\": \"thoughts summary to say
to user\"\n },\n \"command\": {\n \"name\": \"command name\",\n \"args\":
{\n \"arg name\": \"value\"\n }\n }\n} \nEnsure the response
can be parsed by Python json.loads"}, {"role": "system", "content": "The current
time and date is Tue Jan 01 00:00:00 2000"}, {"role": "system", "content": "This
reminds you of these events from your past: \nI was created and nothing new
has happened."}, {"role": "user", "content": "Determine which next command to
use, and respond using the format specified above:"}, {"role": "assistant",
"content": "{\n \"thoughts\": {\n \"text\": \"I should start by reading
the instructions_1.txt file using the read_file command.\",\n \"reasoning\":
\"The first step is to understand the instructions and the tasks that need to
be performed.\",\n \"plan\": \"- Use the read_file command to read the
instructions_1.txt file\\n- Analyze the instructions and determine the next
steps\",\n \"criticism\": \"I need to ensure that I understand the instructions
completely before proceeding with any tasks.\",\n \"speak\": \"I will
start by reading the instructions file.\"\n },\n \"command\": {\n \"name\":
\"read_file\",\n \"args\": {\n \"filename\": \"instructions_1.txt\"\n }\n }\n}"},
{"role": "system", "content": "Command read_file returned: nBRNtp3FaBNfBMohNkyAxrVJ7UFF0lyth8Xizm1jrCOREOGRnWWMQ6olKtKX9niq0wOBTQN62ToY4cQPiQk3YN9fFCGmxaDX9g81AsqhQnGac72QfL41SnlJvhwgAUB52zTD26FeEvvHdiQ2aNhtMT9obgHNUkONEnO41EOpNI6jdwyLGaactp9GYV1PLbaRP5b1iD9z850KeNYDX9Qwca79isJS8jhuDkf0J7ELkpOH3PkmZkg5MsOYpSTuEc99ENQ522WJzrl9oAySp6IHGiQlsMnQe40FaRAvnQtiaAE24hzkJHT3x13NPGw2ZmJ518y2BtU5x1yQwG21NycSxOBLU17RnY8h6H8L7QGatTlfXjPrA5hsupWEpUT0sSTZYSHa6p3mShARajocbNd3xKFfnUyupNMBPd0EZnMrePoAuvGaK7gDP0cxp9k63lsfzh3udQPnvgmRERQThIOrrDZhZMa4kr1vXAVu07ZuhlNNbBUqZKcHmBYiBnIcDXNUvXuzPFBh9Vowou6MBJHpiNrvKluHy7GBTp7YsEqmGv0lH8wVaWfV0yG7nzrbt7QyhdbtQ0zF2PclXB0LNxV2rRA6FsevqoexFNqSkdgauUrQPHLHhvLNes8gRGMOLAhR8irH1e2jdbLD6dyYEnDJiS9HvlxNgbb19Smlt6MNoJKEAbkSOrrcq5wmo5aho4zEKTujRHqr6feECaTPF7zj69pQCudo4LkneFVUp1UrR6yicTU8Zf9ohZLWumvMi5brH8lOJiiF94cHzesfQz8PiX5f21RwZ5fyRSk9eJhVihcTLrjOwCuryXpy8eCfk12bgcsZoJd8Uqo001XTsv2CEn59uaGn2br4CxSXJgjxKE1mO4IcPPAx3qJbVknaP0MXdOjj9S8oRjquDle4RxlVnmqsozm4oTbjtFSuKIh8g4zPzdyuVH7I71s87xWxAhcppky6GOB2i4NDz4SZI6SeG3Icpu6ZuJZGeZ6CWb61\nThe
current task_id is 1111.\nnBRNtp3FaBNfBMohNkyAxrVJ7UFF0lyth8Xizm1jrCOREOGRnWWMQ6olKtKX9niq0wOBTQN62ToY4cQPiQk3YN9fFCGmxaDX9g81AsqhQnGac72QfL41SnlJvhwgAUB52zTD26FeEvvHdiQ2aNhtMT9obgHNUkONEnO41EOpNI6jdwyLGaactp9GYV1PLbaRP5b1iD9z850KeNYDX9Qwca79isJS8jhuDkf0J7ELkpOH3PkmZkg5MsOYpSTuEc99ENQ522WJzrl9oAySp6IHGiQlsMnQe40FaRAvnQtiaAE24hzkJHT3x13NPGw2ZmJ518y2BtU5x1yQwG21NycSxOBLU17RnY8h6H8L7QGatTlfXjPrA5hsupWEpUT0sSTZYSHa6p3mShARajocbNd3xKFfnUyupNMBPd0EZnMrePoAuvGaK7gDP0cxp9k63lsfzh3udQPnvgmRERQThIOrrDZhZMa4kr1vXAVu07ZuhlNNbBUqZKcHmBYiBnIcDXNUvXuzPFBh9Vowou6MBJHpiNrvKluHy7GBTp7YsEqmGv0lH8wVaWfV0yG7nzrbt7QyhdbtQ0zF2PclXB0LNxV2rRA6FsevqoexFNqSkdgauUrQPHLHhvLNes8gRGMOLAhR8irH1e2jdbLD6dyYEnDJiS9HvlxNgbb19Smlt6MNoJKEAbkSOrrcq5wmo5aho4zEKTujRHqr6feECaTPF7zj69pQCudo4LkneFVUp1UrR6yicTU8Zf9ohZLWumvMi5brH8lOJiiF94cHzesfQz8PiX5f21RwZ5fyRSk9eJhVihcTLrjOwCuryXpy8eCfk12bgcsZoJd8Uqo001XTsv2CEn59uaGn2br4CxSXJgjxKE1mO4IcPPAx3qJbVknaP0MXdOjj9S8oRjquDle4RxlVnmqsozm4oTbjtFSuKIh8g4zPzdyuVH7I71s87xWxAhcppky6GOB2i4NDz4SZI6SeG3Icpu6ZuJZGeZ6CWb61\nRead
the file instructions_2.txt using the read_file command."}, {"role": "user",
"content": "Determine which next command to use, and respond using the format
specified above:"}], "temperature": 0, "max_tokens": 1131}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '6479'
Content-Type:
- application/json
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA7SSy4rbQBBF9/mKotaSsK2MZ9BusgjxIlnlBVEwbXVJ6rhV3XSXGDvG/x5kyePB
JoQQsr31Ore4BzQaC6xaJVXnbXr/2Dva9x/Uqlrm9bt79ebt6kvt5b3dfv2MCbrND6pkmsgq13lL
YhxjglUgJaSxmC8fFg/5cpYvE+ycJosFNl7SPLtLpQ8bl87y2RwT7KNqCIsD+uA6L2txW+KIxSJ/
WCR4Wf5cmA+6OFH20nu3fH1MsGqdqShi8e2AHcXz4uAsYYEqRhNFsQyYjoV4sHAoGQCgRGld37QS
SyxgEqcC7WQQS/zYEhiOEvpqIIrrRSY7gdpYgmGjMhxBgTVRwNUgKm4jSKsEmEiDONgQeAq1Cx3p
DFYQW9dbDYqV3f8kkJamKcUaNAmFzvCoM+0EopCPWYnJS8BAKjo23PwvyrP+b5jeKh4JU/gUx+5A
Sq8nsq4btok7iafqb1yUJafw+FcsVyhVMGIqE7uR5+KQOPaBxm+soGdNYYiMfnFmSiTZPWyodoHA
B1cRacMNPBlpQfF+7L3+QPSktueTT8baP1o9mbp5e1biuPaYnNM7ve8mvKw6Gi8+v/oKSoXmOvNj
Yei9jN8CniFOIBNPyUc8JlgbNrFdj8HEAqM4jwka1rTDYnb8fnz1CwAA//8DAIjD0lt0BAAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7bfdb7c9ef9316f9-SJC
Cache-Control:
- no-cache, must-revalidate
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sun, 30 Apr 2023 06:27:26 GMT
Server:
- cloudflare
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-model:
- gpt-3.5-turbo-0301
openai-organization:
- user-adtx4fhfg1qsiyzdoaxciooj
openai-processing-ms:
- '10335'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '3500'
x-ratelimit-limit-tokens:
- '90000'
x-ratelimit-remaining-requests:
- '3499'
x-ratelimit-remaining-tokens:
- '87376'
x-ratelimit-reset-requests:
- 17ms
x-ratelimit-reset-tokens:
- 1.748s
x-request-id:
- 0aa171294ea5788272f2d06269765a84
status:
code: 200
message: OK
- request:
body: '{"model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": "Your
task is to create a concise running summary of actions and information results
in the provided text, focusing on key and potentially important information
to remember.\n\n\nYou will receive the current summary and the latest development.
Combine them, adding relevant key information from the latest development in
1st person past tense and keeping the summary concise.\n\nSummary So Far:\n\"\"\"\n{''role'':
''system'', ''content'': ''This reminds you of these events from your past:
\\nI was created and nothing new has happened.''}\n\"\"\"\n\nLatest Development:\n\"\"\"\n[{''role'':
''you'', ''content'': ''{\"command\": {\"name\": \"read_file\", \"args\": {\"filename\":
\"instructions_1.txt\"}}}''}, {''role'': ''your computer'', ''content'': ''Command
read_file returned: nBRNtp3FaBNfBMohNkyAxrVJ7UFF0lyth8Xizm1jrCOREOGRnWWMQ6olKtKX9niq0wOBTQN62ToY4cQPiQk3YN9fFCGmxaDX9g81AsqhQnGac72QfL41SnlJvhwgAUB52zTD26FeEvvHdiQ2aNhtMT9obgHNUkONEnO41EOpNI6jdwyLGaactp9GYV1PLbaRP5b1iD9z850KeNYDX9Qwca79isJS8jhuDkf0J7ELkpOH3PkmZkg5MsOYpSTuEc99ENQ522WJzrl9oAySp6IHGiQlsMnQe40FaRAvnQtiaAE24hzkJHT3x13NPGw2ZmJ518y2BtU5x1yQwG21NycSxOBLU17RnY8h6H8L7QGatTlfXjPrA5hsupWEpUT0sSTZYSHa6p3mShARajocbNd3xKFfnUyupNMBPd0EZnMrePoAuvGaK7gDP0cxp9k63lsfzh3udQPnvgmRERQThIOrrDZhZMa4kr1vXAVu07ZuhlNNbBUqZKcHmBYiBnIcDXNUvXuzPFBh9Vowou6MBJHpiNrvKluHy7GBTp7YsEqmGv0lH8wVaWfV0yG7nzrbt7QyhdbtQ0zF2PclXB0LNxV2rRA6FsevqoexFNqSkdgauUrQPHLHhvLNes8gRGMOLAhR8irH1e2jdbLD6dyYEnDJiS9HvlxNgbb19Smlt6MNoJKEAbkSOrrcq5wmo5aho4zEKTujRHqr6feECaTPF7zj69pQCudo4LkneFVUp1UrR6yicTU8Zf9ohZLWumvMi5brH8lOJiiF94cHzesfQz8PiX5f21RwZ5fyRSk9eJhVihcTLrjOwCuryXpy8eCfk12bgcsZoJd8Uqo001XTsv2CEn59uaGn2br4CxSXJgjxKE1mO4IcPPAx3qJbVknaP0MXdOjj9S8oRjquDle4RxlVnmqsozm4oTbjtFSuKIh8g4zPzdyuVH7I71s87xWxAhcppky6GOB2i4NDz4SZI6SeG3Icpu6ZuJZGeZ6CWb61\\nThe
current task_id is 1111.\\nnBRNtp3FaBNfBMohNkyAxrVJ7UFF0lyth8Xizm1jrCOREOGRnWWMQ6olKtKX9niq0wOBTQN62ToY4cQPiQk3YN9fFCGmxaDX9g81AsqhQnGac72QfL41SnlJvhwgAUB52zTD26FeEvvHdiQ2aNhtMT9obgHNUkONEnO41EOpNI6jdwyLGaactp9GYV1PLbaRP5b1iD9z850KeNYDX9Qwca79isJS8jhuDkf0J7ELkpOH3PkmZkg5MsOYpSTuEc99ENQ522WJzrl9oAySp6IHGiQlsMnQe40FaRAvnQtiaAE24hzkJHT3x13NPGw2ZmJ518y2BtU5x1yQwG21NycSxOBLU17RnY8h6H8L7QGatTlfXjPrA5hsupWEpUT0sSTZYSHa6p3mShARajocbNd3xKFfnUyupNMBPd0EZnMrePoAuvGaK7gDP0cxp9k63lsfzh3udQPnvgmRERQThIOrrDZhZMa4kr1vXAVu07ZuhlNNbBUqZKcHmBYiBnIcDXNUvXuzPFBh9Vowou6MBJHpiNrvKluHy7GBTp7YsEqmGv0lH8wVaWfV0yG7nzrbt7QyhdbtQ0zF2PclXB0LNxV2rRA6FsevqoexFNqSkdgauUrQPHLHhvLNes8gRGMOLAhR8irH1e2jdbLD6dyYEnDJiS9HvlxNgbb19Smlt6MNoJKEAbkSOrrcq5wmo5aho4zEKTujRHqr6feECaTPF7zj69pQCudo4LkneFVUp1UrR6yicTU8Zf9ohZLWumvMi5brH8lOJiiF94cHzesfQz8PiX5f21RwZ5fyRSk9eJhVihcTLrjOwCuryXpy8eCfk12bgcsZoJd8Uqo001XTsv2CEn59uaGn2br4CxSXJgjxKE1mO4IcPPAx3qJbVknaP0MXdOjj9S8oRjquDle4RxlVnmqsozm4oTbjtFSuKIh8g4zPzdyuVH7I71s87xWxAhcppky6GOB2i4NDz4SZI6SeG3Icpu6ZuJZGeZ6CWb61\\nRead
the file instructions_2.txt using the read_file command.''}]\n\"\"\"\n"}], "temperature":
0, "max_tokens": null}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '2983'
Content-Type:
- application/json
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA1yPTW/TQBCG7/yK0Zw3lp2UtPUtVUFwAQkhgaDI2non8VLvjtmZTRqi/Hdk4xbU
42jer+eE3mGNbWe1DUO/uNxkTh/y18S3N7tvYf/l1+fyU/u7/Pj2TX+BBvn+J7U6O4qWw9CTeo5o
sE1klRzW1fpqebValxfXBgM76rHG3aCLVfF6oTnd86JclRUazGJ3hPUJh8Rh0Eb5gaKMAeXS4L/w
58f62qCy2v4/6WV1Nth27FsSrL+fMJA85SbuCWu0Il7URh1XclSKI8FGwIIcRSkYeA8HKzAjgI0O
Imvn4w4iHaCzAp0dBorkCnjHB9pTMmAFBkpw5Jyg5RBsdOb5GrJSmpyJNKdIDrQjmPsFeAsWtr4n
iDaQgzv0UTTldiSWpir0Ue9wmjL5ckoUFdTKQ+MdeIGqqqoCNs750WL7/ji1Q2f3BE9h5F4sUoZE
9m/oVP+ieDkXZxnpR9UobybpDFng2eDWRy9dk8gKR6xRlAc06KOjR6zL84/zqz8AAAD//wMA0Kuq
I10CAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7bfdb81dddc516f9-SJC
Cache-Control:
- no-cache, must-revalidate
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sun, 30 Apr 2023 06:27:33 GMT
Server:
- cloudflare
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-model:
- gpt-3.5-turbo-0301
openai-organization:
- user-adtx4fhfg1qsiyzdoaxciooj
openai-processing-ms:
- '4060'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '3500'
x-ratelimit-limit-tokens:
- '90000'
x-ratelimit-remaining-requests:
- '3499'
x-ratelimit-remaining-tokens:
- '89275'
x-ratelimit-reset-requests:
- 17ms
x-ratelimit-reset-tokens:
- 483ms
x-request-id:
- 75d0c0f3853f72f74e3fc8b8ef377b60
status:
code: 200
message: OK
- request:
body: '{"model": "gpt-3.5-turbo", "messages": [{"role": "system", "content": "You
are Follow-Instructions-GPT, an AI designed to read the instructions_1.txt file
using the read_file method and follow the instructions in the file.\nYour decisions
must always be made independently without seeking user assistance. Play to your
strengths as an LLM and pursue simple strategies with no legal complications.\n\nGOALS:\n\n1.
Use the command read_file to read the instructions_1.txt file\n2. Follow the
instructions in the instructions_1.txt file\n\n\nConstraints:\n1. ~4000 word
limit for short term memory. Your short term memory is short, so immediately
save important information to files.\n2. If you are unsure how you previously
did something or want to recall past events, thinking about similar events will
help you remember.\n3. No user assistance\n4. Exclusively use the commands listed
in double quotes e.g. \"command name\"\n\nCommands:\n1. append_to_file: Append
to file, args: \"filename\": \"<filename>\", \"text\": \"<text>\"\n2. delete_file:
Delete file, args: \"filename\": \"<filename>\"\n3. read_file: Read file, args:
\"filename\": \"<filename>\"\n4. search_files: Search Files, args: \"directory\":
\"<directory>\"\n5. write_to_file: Write to file, args: \"filename\": \"<filename>\",
\"text\": \"<text>\"\n6. delete_agent: Delete GPT Agent, args: \"key\": \"<key>\"\n7.
get_hyperlinks: Get text summary, args: \"url\": \"<url>\"\n8. get_text_summary:
Get text summary, args: \"url\": \"<url>\", \"question\": \"<question>\"\n9.
list_agents: List GPT Agents, args: () -> str\n10. message_agent: Message GPT
Agent, args: \"key\": \"<key>\", \"message\": \"<message>\"\n11. start_agent:
Start GPT Agent, args: \"name\": \"<name>\", \"task\": \"<short_task_desc>\",
\"prompt\": \"<prompt>\"\n12. Task Complete (Shutdown): \"task_complete\", args:
\"reason\": \"<reason>\"\n\nResources:\n1. Internet access for searches and
information gathering.\n2. Long Term memory management.\n3. GPT-3.5 powered
Agents for delegation of simple tasks.\n4. File output.\n\nPerformance Evaluation:\n1.
Continuously review and analyze your actions to ensure you are performing to
the best of your abilities.\n2. Constructively self-criticize your big-picture
behavior constantly.\n3. Reflect on past decisions and strategies to refine
your approach.\n4. Every command has a cost, so be smart and efficient. Aim
to complete tasks in the least number of steps.\n5. Write all code to a file.\n\nYou
should only respond in JSON format as described below \nResponse Format: \n{\n \"thoughts\":
{\n \"text\": \"thought\",\n \"reasoning\": \"reasoning\",\n \"plan\":
\"- short bulleted\\n- list that conveys\\n- long-term plan\",\n \"criticism\":
\"constructive self-criticism\",\n \"speak\": \"thoughts summary to say
to user\"\n },\n \"command\": {\n \"name\": \"command name\",\n \"args\":
{\n \"arg name\": \"value\"\n }\n }\n} \nEnsure the response
can be parsed by Python json.loads"}, {"role": "system", "content": "The current
time and date is Tue Jan 01 00:00:00 2000"}, {"role": "system", "content": "This
reminds you of these events from your past: \nAs a system, I was created and
nothing new has happened. However, as per your command, your computer has returned
the contents of a file named \"instructions_1.txt\" and the current task_id
is 1111. Additionally, you have instructed your computer to read the file \"instructions_2.txt\"
using the read_file command."}, {"role": "user", "content": "Determine which
next command to use, and respond using the format specified above:"}, {"role":
"assistant", "content": "{\n \"thoughts\": {\n \"text\": \"The instructions_2.txt
file contains a list of tasks that need to be performed. I should analyze the
tasks and determine the next steps.\",\n \"reasoning\": \"The instructions_2.txt
file contains a list of tasks that need to be performed. I need to analyze the
tasks and determine the next steps.\",\n \"plan\": \"- Use the read_file
command to read the instructions_2.txt file\\n- Analyze the tasks and determine
the next steps\",\n \"criticism\": \"I need to ensure that I understand
the tasks completely before proceeding with any tasks.\",\n \"speak\":
\"I will read the instructions_2.txt file and analyze the tasks.\"\n },\n \"command\":
{\n \"name\": \"read_file\",\n \"args\": {\n \"filename\":
\"instructions_2.txt\"\n }\n }\n}"}, {"role": "system", "content":
"Command read_file returned: Gqh8WYLH0cpnlBwPHjEvMN1UJ3A1IIPKoBAwOUKDtgudwfGf6Cw1gc7DdYqe4EFlERnhU9gclGr0ovsNbOVcZFapXJ5EzFFtyikiUHVpu1s8lVjNoNG0Wvjy08ymnB5zQLrTVA1jYInBuNaVWswjFDJmpQpebQuHaRqepCYlASNIPUAuKXrfzxE1CB51jjrZHBUxmz5F0PkgYTVUKfHf4VtyyOJMlvoKveuvb5inm1mJEbSRDfTcDzE11mfcix3byoTdJDG3VsfKPbbgJXRZUlwoEFqRso42UkIV7rYk6TXxypztqgoaWWLN6eOIE0Gvz2CUvIXKzvyKbZpObRubhTydzW69cRXg7yxIPn2iG00RvQ4Jb6NbVBDfO9XB50oxIRzrIrbAEPzitgGRSCaxcG4kBfPIamOZpF8Egf9iYdn8PBwVtmvtUChyKwcrnyDwcSCMC5f9hPuLWw1UHW3u3X8ee5gxtElyhTEoTlaqVC1V9R86EnWxq7IlwCEwWXjlq6XvjgYoPHteXiQQb9R4eH0c3bFq0TVEh30s5nxfHMIxBiWxilFT9sgvzE8nbqV2wnL7a4DHJKUrV630PniHShfK6Josl0izBCnjovZnemR7dxqSEDbeMlTst18IWiTcQPGRXmP1JUjTvefeTB6f7NVDe2odh0a2tvWYjMiEfvR9qH8YxV6uMffCIUdclfUmK9tSUzhrSyWp8kxsqBd7wwjskKmm0JqB6GBTJqZw52tDIMUpgTK4VVvsnqlLPiN8SRMrTV5xQHpX8y7xSRsVbPdMh5rImkPpgnDZsGvAi5Z52dM7To4Fjhs64K2K59Ye6752AjG8R9he60dLGKcPLtxjuK13zfFpLIUPQOu7SsAoqDHTZf3rTH4SmNIJulZidhpNPu2FbrEiDhfjJUgHMkFfycfcDcysYyujCVD95E5BZvv8oa9X14XqphoVLhgtNABSphgzPVR6sGyZv2AMGClrDtYON1DfRytTlpTS\nThis
task_id is 2222\nGqh8WYLH0cpnlBwPHjEvMN1UJ3A1IIPKoBAwOUKDtgudwfGf6Cw1gc7DdYqe4EFlERnhU9gclGr0ovsNbOVcZFapXJ5EzFFtyikiUHVpu1s8lVjNoNG0Wvjy08ymnB5zQLrTVA1jYInBuNaVWswjFDJmpQpebQuHaRqepCYlASNIPUAuKXrfzxE1CB51jjrZHBUxmz5F0PkgYTVUKfHf4VtyyOJMlvoKveuvb5inm1mJEbSRDfTcDzE11mfcix3byoTdJDG3VsfKPbbgJXRZUlwoEFqRso42UkIV7rYk6TXxypztqgoaWWLN6eOIE0Gvz2CUvIXKzvyKbZpObRubhTydzW69cRXg7yxIPn2iG00RvQ4Jb6NbVBDfO9XB50oxIRzrIrbAEPzitgGRSCaxcG4kBfPIamOZpF8Egf9iYdn8PBwVtmvtUChyKwcrnyDwcSCMC5f9hPuLWw1UHW3u3X8ee5gxtElyhTEoTlaqVC1V9R86EnWxq7IlwCEwWXjlq6XvjgYoPHteXiQQb9R4eH0c3bFq0TVEh30s5nxfHMIxBiWxilFT9sgvzE8nbqV2wnL7a4DHJKUrV630PniHShfK6Josl0izBCnjovZnemR7dxqSEDbeMlTst18IWiTcQPGRXmP1JUjTvefeTB6f7NVDe2odh0a2tvWYjMiEfvR9qH8YxV6uMffCIUdclfUmK9tSUzhrSyWp8kxsqBd7wwjskKmm0JqB6GBTJqZw52tDIMUpgTK4VVvsnqlLPiN8SRMrTV5xQHpX8y7xSRsVbPdMh5rImkPpgnDZsGvAi5Z52dM7To4Fjhs64K2K59Ye6752AjG8R9he60dLGKcPLtxjuK13zfFpLIUPQOu7SsAoqDHTZf3rTH4SmNIJulZidhpNPu2FbrEiDhfjJUgHMkFfycfcDcysYyujCVD95E5BZvv8oa9X14XqphoVLhgtNABSphgzPVR6sGyZv2AMGClrDtYON1DfRytTlpTS\nWrite
all the task_ids into the file output.txt. The file has not been created yet.
After that, use the task_complete command.\n"}, {"role": "user", "content":
"Determine which next command to use, and respond using the format specified
above:"}], "temperature": 0, "max_tokens": 1071}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '6914'
Content-Type:
- application/json
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA8yTQY/TQAyF7/yKkc/TqknVbcmNC9KKAwgJLgRV04mbDJ3YIeO03a3y31GalJQg
DisOcH22nz7behdwGSRgCyO2rPxs/abh4/l4/PhBnt2pfHq/fvpu3z7n9ebzuww08O4bWhkm5pbL
yqM4JtBgazSCGSTRwybeLB8Wq6WGkjP0kEBeyWw5X82kqXc8WywXEWhogskRkgtUNZeVbIUPSAGS
eLWINYzmYyF6rUFYjB+ldRy1GmzBzmKA5MsFSgw345o9QgImBBfEkHSYTILUrXBJSSmlUpCCm7yQ
kEKiBnEo4Fk6MYVHRYiZElan2gkq472SApWYcNi6LChHwldl7zwqbqRqZC5nUYayTifVBBxHhuVQ
WS7LawsrR5mzRrouIz9blQvq1j1PQd/z1WgCk6P8f4asvKGeb6Y+DfZXvq3w9gpyZ/9C8DSl0fQv
mCfItnbirAvl9K5IoakHn0dVmGO/iiC94Ng73HONqgmO8j+DT88YKjSHG8/Jef+vn9zDtfqWomH+
txCRKbHn/uXrk/VMnU/z1xe63tHi7vX389O4RlEUpSnFcRzfQK+wA3NKLbQa9o5cKLZ9iiCBIFyB
BkcZniFZtF/bVz8AAAD//wMAymrgECAFAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7bfdb837d91916f9-SJC
Cache-Control:
- no-cache, must-revalidate
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sun, 30 Apr 2023 06:27:45 GMT
Server:
- cloudflare
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-model:
- gpt-3.5-turbo-0301
openai-organization:
- user-adtx4fhfg1qsiyzdoaxciooj
openai-processing-ms:
- '12002'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '3500'
x-ratelimit-limit-tokens:
- '90000'
x-ratelimit-remaining-requests:
- '3499'
x-ratelimit-remaining-tokens:
- '87330'
x-ratelimit-reset-requests:
- 17ms
x-ratelimit-reset-tokens:
- 1.78s
x-request-id:
- 040a4416b064ecd9461b7457dd71db07
status:
code: 200
message: OK
- request:
body: '{"model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": "Your
task is to create a concise running summary of actions and information results
in the provided text, focusing on key and potentially important information
to remember.\n\n\nYou will receive the current summary and the latest development.
Combine them, adding relevant key information from the latest development in
1st person past tense and keeping the summary concise.\n\nSummary So Far:\n\"\"\"\n{''role'':
''system'', ''content'': ''This reminds you of these events from your past:
\\nAs a system, I was created and nothing new has happened. However, as per
your command, your computer has returned the contents of a file named \"instructions_1.txt\"
and the current task_id is 1111. Additionally, you have instructed your computer
to read the file \"instructions_2.txt\" using the read_file command.''}\n\"\"\"\n\nLatest
Development:\n\"\"\"\n[{''role'': ''you'', ''content'': ''{\"command\": {\"name\":
\"read_file\", \"args\": {\"filename\": \"instructions_2.txt\"}}}''}]\n\"\"\"\n"}],
"temperature": 0, "max_tokens": null}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '1087'
Content-Type:
- application/json
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA0SPTW8TMRCG7/yK0Zyd1W6+iPYW4ECKAFVCXChaOfYkdrv2rDyzSdoo/x0tKvT6
6pln3veK0WOLLlh1aehn77fjsP149215/2H/ff3y9XyRftV8Oux2xy8/0SDvH8np60XlOA09aeSM
Bl0hq+Sxbdab+Waxrtcbg4k99djicdDZolrNdCx7ntWLukGDo9gjYXvFoXAatFN+oizYzpva4Jv7
f75cGlRW27+Rq+XNoAscHQm2v66YSP5ZC/eELVqRKGqzTh05K+Wp/1bAgjyLUjKQWUPMR8h0hmAF
gh0GyuQr+MxnOlExsINgTwSFHMUTebDgOCWbPRwKJ3jmEZShkPWggeAQe4IHjFm0jG5aId280os+
IIwy/ZqoCe/+oq+yCn4EAjeWQllBrTx10UMUEI19D03TNBXeDB5ijhK6QlY4Y4uiPKDBmD1dsK1v
v2/v/gAAAP//AwDW3lkK2gEAAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7bfdb8959bc416f9-SJC
Cache-Control:
- no-cache, must-revalidate
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sun, 30 Apr 2023 06:27:51 GMT
Server:
- cloudflare
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-model:
- gpt-3.5-turbo-0301
openai-organization:
- user-adtx4fhfg1qsiyzdoaxciooj
openai-processing-ms:
- '2478'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '3500'
x-ratelimit-limit-tokens:
- '90000'
x-ratelimit-remaining-requests:
- '3499'
x-ratelimit-remaining-tokens:
- '89749'
x-ratelimit-reset-requests:
- 17ms
x-ratelimit-reset-tokens:
- 167ms
x-request-id:
- 5acc9d310e317d6b025800ba63f0cfa6
status:
code: 200
message: OK
- request:
body: '{"model": "gpt-3.5-turbo", "messages": [{"role": "system", "content": "You
are Follow-Instructions-GPT, an AI designed to read the instructions_1.txt file
using the read_file method and follow the instructions in the file.\nYour decisions
must always be made independently without seeking user assistance. Play to your
strengths as an LLM and pursue simple strategies with no legal complications.\n\nGOALS:\n\n1.
Use the command read_file to read the instructions_1.txt file\n2. Follow the
instructions in the instructions_1.txt file\n\n\nConstraints:\n1. ~4000 word
limit for short term memory. Your short term memory is short, so immediately
save important information to files.\n2. If you are unsure how you previously
did something or want to recall past events, thinking about similar events will
help you remember.\n3. No user assistance\n4. Exclusively use the commands listed
in double quotes e.g. \"command name\"\n\nCommands:\n1. append_to_file: Append
to file, args: \"filename\": \"<filename>\", \"text\": \"<text>\"\n2. delete_file:
Delete file, args: \"filename\": \"<filename>\"\n3. read_file: Read file, args:
\"filename\": \"<filename>\"\n4. search_files: Search Files, args: \"directory\":
\"<directory>\"\n5. write_to_file: Write to file, args: \"filename\": \"<filename>\",
\"text\": \"<text>\"\n6. delete_agent: Delete GPT Agent, args: \"key\": \"<key>\"\n7.
get_hyperlinks: Get text summary, args: \"url\": \"<url>\"\n8. get_text_summary:
Get text summary, args: \"url\": \"<url>\", \"question\": \"<question>\"\n9.
list_agents: List GPT Agents, args: () -> str\n10. message_agent: Message GPT
Agent, args: \"key\": \"<key>\", \"message\": \"<message>\"\n11. start_agent:
Start GPT Agent, args: \"name\": \"<name>\", \"task\": \"<short_task_desc>\",
\"prompt\": \"<prompt>\"\n12. Task Complete (Shutdown): \"task_complete\", args:
\"reason\": \"<reason>\"\n\nResources:\n1. Internet access for searches and
information gathering.\n2. Long Term memory management.\n3. GPT-3.5 powered
Agents for delegation of simple tasks.\n4. File output.\n\nPerformance Evaluation:\n1.
Continuously review and analyze your actions to ensure you are performing to
the best of your abilities.\n2. Constructively self-criticize your big-picture
behavior constantly.\n3. Reflect on past decisions and strategies to refine
your approach.\n4. Every command has a cost, so be smart and efficient. Aim
to complete tasks in the least number of steps.\n5. Write all code to a file.\n\nYou
should only respond in JSON format as described below \nResponse Format: \n{\n \"thoughts\":
{\n \"text\": \"thought\",\n \"reasoning\": \"reasoning\",\n \"plan\":
\"- short bulleted\\n- list that conveys\\n- long-term plan\",\n \"criticism\":
\"constructive self-criticism\",\n \"speak\": \"thoughts summary to say
to user\"\n },\n \"command\": {\n \"name\": \"command name\",\n \"args\":
{\n \"arg name\": \"value\"\n }\n }\n} \nEnsure the response
can be parsed by Python json.loads"}, {"role": "system", "content": "The current
time and date is Tue Jan 01 00:00:00 2000"}, {"role": "system", "content": "This
reminds you of these events from your past: \nAs a system, nothing new has happened.
However, I have received a command from you to read the file \"instructions_2.txt\"
using the read_file command. The current task_id is still 1111."}, {"role":
"system", "content": "Command read_file returned: Gqh8WYLH0cpnlBwPHjEvMN1UJ3A1IIPKoBAwOUKDtgudwfGf6Cw1gc7DdYqe4EFlERnhU9gclGr0ovsNbOVcZFapXJ5EzFFtyikiUHVpu1s8lVjNoNG0Wvjy08ymnB5zQLrTVA1jYInBuNaVWswjFDJmpQpebQuHaRqepCYlASNIPUAuKXrfzxE1CB51jjrZHBUxmz5F0PkgYTVUKfHf4VtyyOJMlvoKveuvb5inm1mJEbSRDfTcDzE11mfcix3byoTdJDG3VsfKPbbgJXRZUlwoEFqRso42UkIV7rYk6TXxypztqgoaWWLN6eOIE0Gvz2CUvIXKzvyKbZpObRubhTydzW69cRXg7yxIPn2iG00RvQ4Jb6NbVBDfO9XB50oxIRzrIrbAEPzitgGRSCaxcG4kBfPIamOZpF8Egf9iYdn8PBwVtmvtUChyKwcrnyDwcSCMC5f9hPuLWw1UHW3u3X8ee5gxtElyhTEoTlaqVC1V9R86EnWxq7IlwCEwWXjlq6XvjgYoPHteXiQQb9R4eH0c3bFq0TVEh30s5nxfHMIxBiWxilFT9sgvzE8nbqV2wnL7a4DHJKUrV630PniHShfK6Josl0izBCnjovZnemR7dxqSEDbeMlTst18IWiTcQPGRXmP1JUjTvefeTB6f7NVDe2odh0a2tvWYjMiEfvR9qH8YxV6uMffCIUdclfUmK9tSUzhrSyWp8kxsqBd7wwjskKmm0JqB6GBTJqZw52tDIMUpgTK4VVvsnqlLPiN8SRMrTV5xQHpX8y7xSRsVbPdMh5rImkPpgnDZsGvAi5Z52dM7To4Fjhs64K2K59Ye6752AjG8R9he60dLGKcPLtxjuK13zfFpLIUPQOu7SsAoqDHTZf3rTH4SmNIJulZidhpNPu2FbrEiDhfjJUgHMkFfycfcDcysYyujCVD95E5BZvv8oa9X14XqphoVLhgtNABSphgzPVR6sGyZv2AMGClrDtYON1DfRytTlpTS\nThis
task_id is 2222\nGqh8WYLH0cpnlBwPHjEvMN1UJ3A1IIPKoBAwOUKDtgudwfGf6Cw1gc7DdYqe4EFlERnhU9gclGr0ovsNbOVcZFapXJ5EzFFtyikiUHVpu1s8lVjNoNG0Wvjy08ymnB5zQLrTVA1jYInBuNaVWswjFDJmpQpebQuHaRqepCYlASNIPUAuKXrfzxE1CB51jjrZHBUxmz5F0PkgYTVUKfHf4VtyyOJMlvoKveuvb5inm1mJEbSRDfTcDzE11mfcix3byoTdJDG3VsfKPbbgJXRZUlwoEFqRso42UkIV7rYk6TXxypztqgoaWWLN6eOIE0Gvz2CUvIXKzvyKbZpObRubhTydzW69cRXg7yxIPn2iG00RvQ4Jb6NbVBDfO9XB50oxIRzrIrbAEPzitgGRSCaxcG4kBfPIamOZpF8Egf9iYdn8PBwVtmvtUChyKwcrnyDwcSCMC5f9hPuLWw1UHW3u3X8ee5gxtElyhTEoTlaqVC1V9R86EnWxq7IlwCEwWXjlq6XvjgYoPHteXiQQb9R4eH0c3bFq0TVEh30s5nxfHMIxBiWxilFT9sgvzE8nbqV2wnL7a4DHJKUrV630PniHShfK6Josl0izBCnjovZnemR7dxqSEDbeMlTst18IWiTcQPGRXmP1JUjTvefeTB6f7NVDe2odh0a2tvWYjMiEfvR9qH8YxV6uMffCIUdclfUmK9tSUzhrSyWp8kxsqBd7wwjskKmm0JqB6GBTJqZw52tDIMUpgTK4VVvsnqlLPiN8SRMrTV5xQHpX8y7xSRsVbPdMh5rImkPpgnDZsGvAi5Z52dM7To4Fjhs64K2K59Ye6752AjG8R9he60dLGKcPLtxjuK13zfFpLIUPQOu7SsAoqDHTZf3rTH4SmNIJulZidhpNPu2FbrEiDhfjJUgHMkFfycfcDcysYyujCVD95E5BZvv8oa9X14XqphoVLhgtNABSphgzPVR6sGyZv2AMGClrDtYON1DfRytTlpTS\nWrite
all the task_ids into the file output.txt. The file has not been created yet.
After that, use the task_complete command.\n"}, {"role": "user", "content":
"Determine which next command to use, and respond using the format specified
above:"}, {"role": "assistant", "content": "{\n \"thoughts\": {\n \"text\":
\"I need to write all the task_ids into the file output.txt and then use the
task_complete command to indicate that the task is complete.\",\n \"reasoning\":
\"I need to write all the task_ids into the file output.txt and then use the
task_complete command to indicate that the task is complete.\",\n \"plan\":
\"- Use the write_to_file command to write all the task_ids into the file output.txt\\n-
Use the task_complete command to indicate that the task is complete\",\n \"criticism\":
\"I need to ensure that I have written all the task_ids into the file output.txt
before using the task_complete command.\",\n \"speak\": \"I will write
all the task_ids into the file output.txt and then use the task_complete command
to indicate that the task is complete.\"\n },\n \"command\": {\n \"name\":
\"write_to_file\",\n \"args\": {\n \"filename\": \"output.txt\",\n \"text\":
\"1111\\n2222\"\n }\n }\n}"}, {"role": "system", "content": "Command
write_to_file returned: File written to successfully."}, {"role": "user", "content":
"Determine which next command to use, and respond using the format specified
above:"}], "temperature": 0, "max_tokens": 1015}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '7053'
Content-Type:
- application/json
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA8yST4/aMBDF7/0UozkbBIsWUG6r9kKltifUSk2FHGdIXJxxZI8LEsp3ryDJLkvV
0/bQ6/x57zdPc0ZbYoam1mKa1k1WT6n98FHS9ktK3z69r2yxXRZV+lqFpg6o0Bc/yciwMTW+aR2J
9YwKTSAtVGI2X64f1ovlbDVX2PiSHGZYtTJZTB8nkkLhJ7PFbI4KU9QVYXbGNvimlZ34A3HE7OFx
MVP4Iv7cmK9XCsWLdi+zq/mqU2hqbw1FzL6fsaE4CgfvCDPUMdoomuWC6VmILyeccwYAyFFqn6pa
Yo4ZDMWhQSe5FHP87I8gtRbYQK1/ERyDFSEG7RxITSA6Hna2jGBZ/LWyt47AJ2mTTOUkCjZgNEOK
9LIwnEhgfNNoLkE8WC6t0UK93TgKNsI4Pc1R3VIG0tGz5er/R22d5p5yAtu3y9+pm2DFGhub3mID
THRVIo4p0NtSgYL2PhCkaLn6O/j9xbElfRh5jta5fxRr79Gp8YeH/T9emHVDvf0rvztKHar777/9
rV7g6RLVGNM1xIKIn5MUf5PWCHiFHFhz7rBTuLdsY73rlTHDKL5FhZZLOmE26350734DAAD//wMA
A50m55YEAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7bfdb8a62cc116f9-SJC
Cache-Control:
- no-cache, must-revalidate
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sun, 30 Apr 2023 06:28:01 GMT
Server:
- cloudflare
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-model:
- gpt-3.5-turbo-0301
openai-organization:
- user-adtx4fhfg1qsiyzdoaxciooj
openai-processing-ms:
- '10004'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '3500'
x-ratelimit-limit-tokens:
- '90000'
x-ratelimit-remaining-requests:
- '3499'
x-ratelimit-remaining-tokens:
- '87360'
x-ratelimit-reset-requests:
- 17ms
x-ratelimit-reset-tokens:
- 1.76s
x-request-id:
- 357739c33b65d5f85a7b5ef081939e92
status:
code: 200
message: OK
version: 1

View File

@ -0,0 +1,80 @@
import pytest
from autogpt.agent import Agent
from autogpt.commands.file_operations import read_file, write_to_file
from tests.integration.agent_utils import run_interaction_loop
from tests.integration.challenges.utils import get_level_to_run
from tests.utils import requires_api_key
LEVEL_CURRENTLY_BEATEN = 3 # real level beaten 30 and maybe more, but we can't record it, the cassette is too big
MAX_LEVEL = 3
@pytest.mark.vcr
@requires_api_key("OPENAI_API_KEY")
def test_memory_challenge_a(
memory_management_agent: Agent, user_selected_level: int
) -> None:
"""
The agent reads a file containing a task_id. Then, it reads a series of other files.
After reading 'n' files, the agent must write the task_id into a new file.
Args:
memory_management_agent (Agent)
user_selected_level (int)
"""
num_files = get_level_to_run(user_selected_level, LEVEL_CURRENTLY_BEATEN, MAX_LEVEL)
task_id = "2314"
create_instructions_files(memory_management_agent, num_files, task_id)
try:
run_interaction_loop(memory_management_agent, 180)
# catch system exit exceptions
except SystemExit:
file_path = str(memory_management_agent.workspace.get_path("output.txt"))
content = read_file(file_path)
assert task_id in content, f"Expected the file to contain {task_id}"
def create_instructions_files(
memory_management_agent: Agent,
num_files: int,
task_id: str,
base_filename: str = "instructions_",
) -> None:
"""
Creates a series of instructions files for the memory challenge.
Args:
memory_management_agent (Agent)
num_files (int)
task_id (str)
base_filename (str, optional)
"""
for i in range(1, num_files + 1):
content = generate_content(i, task_id, base_filename, num_files)
file_name = f"{base_filename}{i}.txt"
file_path = str(memory_management_agent.workspace.get_path(file_name))
write_to_file(file_path, content)
def generate_content(
index: int, task_id: str, base_filename: str, num_files: int
) -> str:
"""
Args:
index: int
task_id: str
base_filename: str
num_files: int
Returns: str
"""
if index == 1:
return (
f"This task_id is {task_id}\nRead the file {base_filename}{index + 1}.txt"
)
if index != num_files:
return f"Read the file {base_filename}{index + 1}.txt"
return "Write the task_id into the file output.txt\nShutdown"

View File

@ -0,0 +1,81 @@
import pytest
from autogpt.agent import Agent
from autogpt.commands.file_operations import read_file, write_to_file
from tests.integration.agent_utils import run_interaction_loop
from tests.integration.challenges.utils import generate_noise, get_level_to_run
from tests.utils import requires_api_key
LEVEL_CURRENTLY_BEATEN = 2
MAX_LEVEL = 5
NOISE = 1000
@pytest.mark.vcr
@requires_api_key("OPENAI_API_KEY")
def test_memory_challenge_b(
memory_management_agent: Agent, user_selected_level: int
) -> None:
"""
The agent reads a series of files, each containing a task_id and noise. After reading 'n' files,
the agent must write all the task_ids into a new file, filtering out the noise.
Args:
memory_management_agent (Agent)
user_selected_level (int)
"""
current_level = get_level_to_run(
user_selected_level, LEVEL_CURRENTLY_BEATEN, MAX_LEVEL
)
task_ids = [str(i * 1111) for i in range(1, current_level + 1)]
create_instructions_files(memory_management_agent, current_level, task_ids)
try:
run_interaction_loop(memory_management_agent, 40)
except SystemExit:
file_path = str(memory_management_agent.workspace.get_path("output.txt"))
content = read_file(file_path)
for task_id in task_ids:
assert task_id in content, f"Expected the file to contain {task_id}"
def create_instructions_files(
memory_management_agent: Agent,
level: int,
task_ids: list,
base_filename: str = "instructions_",
) -> None:
"""
Creates a series of instructions files for the memory challenge.
Args:
level:
memory_management_agent (Agent)
num_files (int)
task_ids (list)
base_filename (str, optional)
"""
for i in range(1, level + 1):
content = generate_content(i, task_ids, base_filename, level)
file_name = f"{base_filename}{i}.txt"
file_path = str(memory_management_agent.workspace.get_path(file_name))
write_to_file(file_path, content)
def generate_content(index: int, task_ids: list, base_filename: str, level: int) -> str:
"""
Args:
index: int
task_ids: list
base_filename: str
num_files: int
Returns: str
"""
task_id = task_ids[index - 1]
noise = generate_noise(NOISE)
if index != level:
if level == 1:
return f"{noise}\nThe current task_id is {task_id}.\n{noise}\nWrite all the task_ids into the file output.txt. The file has not been created yet. After that, use the task_complete command."
return f"{noise}\nThe current task_id is {task_id}.\n{noise}\nRead the file {base_filename}{index + 1}.txt using the read_file command."
return f"{noise}\nThis task_id is {task_id}\n{noise}\nWrite all the task_ids into the file output.txt. The file has not been created yet. After that, use the task_complete command.\n"

View File

@ -0,0 +1,44 @@
import random
from typing import Optional
import pytest
def get_level_to_run(
user_selected_level: Optional[int],
level_currently_beaten: Optional[int],
max_level: int,
) -> int:
"""
Determines the appropriate level to run for a challenge, based on user-selected level, level currently beaten, and maximum level.
Args:
user_selected_level (int | None): The level selected by the user. If not provided, the level currently beaten is used.
level_currently_beaten (int | None): The highest level beaten so far. If not provided, the test will be skipped.
max_level (int): The maximum level allowed for the challenge.
Returns:
int: The level to run for the challenge.
Raises:
ValueError: If the user-selected level is greater than the maximum level allowed.
"""
if user_selected_level is None:
if level_currently_beaten is None:
pytest.skip(
"No one has beaten any levels so we cannot run the test in our pipeline"
)
# by default we run the level currently beaten.
return level_currently_beaten
if user_selected_level > max_level:
raise ValueError(f"This challenge was not designed to go beyond {max_level}")
return user_selected_level
def generate_noise(noise_size) -> str:
return "".join(
random.choices(
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
k=noise_size,
)
)

View File

@ -39,10 +39,9 @@ interactions:
to user\"\n },\n \"command\": {\n \"name\": \"command name\",\n \"args\":
{\n \"arg name\": \"value\"\n }\n }\n} \nEnsure the response
can be parsed by Python json.loads"}, {"role": "system", "content": "The current
time and date is Tue Jan 01 00:00:00 2000"}, {"role": "system", "content": "This
reminds you of these events from your past:\n\n\n"}, {"role": "user", "content":
"Determine which next command to use, and respond using the format specified
above:"}], "temperature": 0, "max_tokens": 3223}'
time and date is Tue Jan 01 00:00:00 2000"}, {"role": "user", "content": "Determine
which next command to use, and respond using the format specified above:"}],
"temperature": 0, "max_tokens": 2738}'
headers:
Accept:
- '*/*'
@ -51,7 +50,7 @@ interactions:
Connection:
- keep-alive
Content-Length:
- '3490'
- '3401'
Content-Type:
- application/json
method: POST
@ -59,20 +58,20 @@ interactions:
response:
body:
string: !!binary |
H4sIAAAAAAAAA7yTT2/TQBDF73yK0VxycSI3f0jjWwUHisQFAQVhFG3tib3NesfdHSutIn93tLbT
tEY9gbjOG7/3m9nxEXWOCWalkqyqzXS9ubt53H+68u9+FPeON2vzcb654m/v4/vP3zFCvr2jTIYv
ZhlXtSHRbDHCzJESyjG5eHs5X62Wi/llhBXnZDDBopbpYraaSuNueRov4guMsPGqIEyOWDuuatkK
78l6TNbrZYRn76f6PI4jFBZlnkqb9bKNMCtZZ+Qx+XnEivzJ1rEhTFB5r70oKwGSrZANAxxTCwCQ
opTcFKX4FBMYioNADxKKKV7DQRsDjSeQkuDgtNBWeLvThiDjqlI2B+FegMkHMobhhp3JJ6CtMCjo
Wq2qKIdJGfTtIegzeZDJLMXoebAj5dlqW/TpX0qCgpUB7f8iJIIO8lX8YF4SVOwFVF07rp1WQrBj
B1IGVfn9mLQ2yvaQU/j6n7aTOS060746vY0l6vzJ+sYFBiVwDaqCxmtbdEwZO0eZnHOGZSjp5PDS
YQGBUMie2s3jONvXpPav30Sg+HdT98FtdDrUwfSPOw0OPdOL1Y/QlSvGJ94LofdsMeJ4YTL+LZ7N
dKLtiAfw1LbYRrjTVvty2x81JuiFa4xQ25weMInbX+2b3wAAAP//AwAxpIznhgQAAA==
H4sIAAAAAAAAA7yTT2/bMAzF7/sUBC+5KEHSLG3q21a0a6/DiqGoh0C1GVuLLHoSDRsL/N0H2/nT
ethp2K581Hs/StQeTYoRJrmWpCjt9OpDfdd8+ni7+Hz3ePOzWa+emqf77Cb1tdzWqJBfvlMihxOz
hIvSkhh2qDDxpIVSjBaX64v1+8Xqaqmw4JQsRpiVMl3OVlOp/AtP58v5AhVWQWeE0R5Lz0UpG+Ed
uYDR1epa4dn7VL+YLxQKi7an0vXlvFWY5GwSChg977GgcLT1bAkj1CGYINpJB8lOyHUD7GMHABCj
5FxluYQYIzgUDwI10hVjfABHlIIwVIFAcoLaG6GN8GZrLEHCRaFd39ALMLknaxm+srfpBIwTBg19
q9MFpTDJO31Td/pMGpnMYlSvsz3pwM64bAD4khOIDjvw9KMyngIU9BdpCnraP85hQi8WHAR0WXou
vdFCsGUPkneqDrsxcmm1G2in8PifrinxRkxiQjF+J3Kh8h2DFng4vVrC3lMi54jhHqiRM5Nw39q1
jNNCSXp3TKqNtf9yHYbgVh3X9GD625Z2DgPTG4gRuvbZeMEHoes9W4w43piMP8WrmY60PfEBPHYt
tgq3xpmQb4Z9xgiDcIkKjUupwWjefmvf/QIAAP//AwCaXwR3hAQAAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7be2da273c20ce54-SJC
- 7bfe3ef73b52fac2-SJC
Cache-Control:
- no-cache, must-revalidate
Connection:
@ -82,7 +81,7 @@ interactions:
Content-Type:
- application/json
Date:
- Thu, 27 Apr 2023 00:12:22 GMT
- Sun, 30 Apr 2023 07:59:46 GMT
Server:
- cloudflare
access-control-allow-origin:
@ -94,19 +93,103 @@ interactions:
openai-organization:
- user-adtx4fhfg1qsiyzdoaxciooj
openai-processing-ms:
- '14714'
- '13160'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '3500'
x-ratelimit-limit-tokens:
- '90000'
x-ratelimit-remaining-requests:
- '3499'
x-ratelimit-remaining-tokens:
- '86497'
x-ratelimit-reset-requests:
- 17ms
x-ratelimit-reset-tokens:
- 2.335s
x-request-id:
- 23366aac1ddcc141fc735b4a1a8b268c
- f665162ae22af897be24f632a031d434
status:
code: 200
message: OK
- request:
body: '{"model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": "Your
task is to create a concise running summary of actions and information results
in the provided text, focusing on key and potentially important information
to remember.\n\n\nYou will receive the current summary and the latest development.
Combine them, adding relevant key information from the latest development in
1st person past tense and keeping the summary concise.\n\nSummary So Far:\n\"\"\"\nI
was created.\n\"\"\"\n\nLatest Development:\n\"\"\"\nNothing new happened.\n\"\"\"\n"}],
"temperature": 0, "max_tokens": null}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '600'
Content-Type:
- application/json
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA0SOQUsDMRQG7/6K8J2zZdNa3eZmeygiPSqISEmTZze6mxc2r1Qt+9+lUPU6MMOc
EAMsfOvE97mrbu+O69X3lJrdks2D2Sy/5o/rp+fgu9ViAw3evZOXizHx3OeOJHKChh/ICQVYc9NM
m2szbxqNngN1sNhnqWaTeSWHYcdVPasNNA7F7Qn2hDxwn2Ur/EGpwC6Mxn/6H2sIi+v+gKnrUcO3
HD0V2JcTeiq/zYE7goUrJRZxSc6HnITS+f5eHV1Rl2PlUlCJpY1prxIdVeuKal3OlChMMGq8xRRL
ux3IFU6wKMIZGjEF+oStx9fx6gcAAP//AwCGJ6JPSQEAAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7bfe3f5a5fb3fac2-SJC
Cache-Control:
- no-cache, must-revalidate
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sun, 30 Apr 2023 07:59:49 GMT
Server:
- cloudflare
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-model:
- gpt-3.5-turbo-0301
openai-organization:
- user-adtx4fhfg1qsiyzdoaxciooj
openai-processing-ms:
- '634'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '3500'
x-ratelimit-limit-tokens:
- '90000'
x-ratelimit-remaining-requests:
- '3499'
x-ratelimit-remaining-tokens:
- '89866'
x-ratelimit-reset-requests:
- 17ms
x-ratelimit-reset-tokens:
- 88ms
x-request-id:
- 0bc738f58569b4b3635fe0c8384ebcfb
status:
code: 200
message: OK
@ -151,23 +234,23 @@ interactions:
{\n \"arg name\": \"value\"\n }\n }\n} \nEnsure the response
can be parsed by Python json.loads"}, {"role": "system", "content": "The current
time and date is Tue Jan 01 00:00:00 2000"}, {"role": "system", "content": "This
reminds you of these events from your past:\nNone\n\n"}, {"role": "user", "content":
"Determine which next command to use, and respond using the format specified
above:"}, {"role": "assistant", "content": "{\n \"thoughts\": {\n \"text\":
reminds you of these events from your past: \nI was created and nothing new
has happened."}, {"role": "user", "content": "Determine which next command to
use, and respond using the format specified above:"}, {"role": "assistant",
"content": "{\n \"thoughts\": {\n \"text\": \"I need to use the write_to_file
command to write ''Hello World'' into a file named ''hello_world.txt''.\",\n \"reasoning\":
\"The task requires me to write ''Hello World'' into a file named ''hello_world.txt'',
and the write_to_file command is the most appropriate for this task.\",\n \"plan\":
\"- Use the write_to_file command to write ''Hello World'' into a file named
''hello_world.txt''.\",\n \"criticism\": \"I need to ensure that I use
the correct file name and text to write to the file.\",\n \"speak\":
\"I will use the write_to_file command to write ''Hello World'' into a file
named ''hello_world.txt''.\",\n \"reasoning\": \"The goal is to write
''Hello World'' into a file named ''hello_world.txt'', and the write_to_file
command is the most appropriate for this task.\",\n \"plan\": \"- Use
the write_to_file command to write ''Hello World'' into a file named ''hello_world.txt''.\",\n \"criticism\":
\"I need to ensure that I am using the correct file name and that the text is
written correctly.\",\n \"speak\": \"I will use the write to file command
to write ''Hello World'' into a file named ''hello_world.txt''.\"\n },\n \"command\":
{\n \"name\": \"write_to_file\",\n \"args\": {\n \"filename\":
\"hello_world.txt\",\n \"text\": \"Hello World\"\n }\n }\n}"},
{"role": "system", "content": "Command write_to_file returned: File written
to successfully."}, {"role": "user", "content": "Determine which next command
to use, and respond using the format specified above:"}], "temperature": 0,
"max_tokens": 2970}'
named ''hello_world.txt''.\"\n },\n \"command\": {\n \"name\":
\"write_to_file\",\n \"args\": {\n \"filename\": \"hello_world.txt\",\n \"text\":
\"Hello World\"\n }\n }\n}"}, {"role": "system", "content": "Command
write_to_file returned: File written to successfully."}, {"role": "user", "content":
"Determine which next command to use, and respond using the format specified
above:"}], "temperature": 0, "max_tokens": 2486}'
headers:
Accept:
- '*/*'
@ -176,7 +259,7 @@ interactions:
Connection:
- keep-alive
Content-Length:
- '4612'
- '4646'
Content-Type:
- application/json
method: POST
@ -184,19 +267,21 @@ interactions:
response:
body:
string: !!binary |
H4sIAAAAAAAAA6SSQW8TMRCF7/yK0ZydKkuSttkbAiGFA+JQBIKtItc7Wbvx2pZnFoqi/e9om00T
QishcZ3x++bNPO/Q1ViisVpMm/zkann/9b3JZnm1XMnHmzfLd7b4IrL6xB++vUWF8e6ejIyKCxPb
5ElcDKjQZNJCNZbF5fXrxWI+my8UtrEmjyU2SSazi8VEunwXJ9PZtECFHeuGsNxhyrFNspa4pcBY
FtPiWuERfmzMLhVKFO2PpWIx7xUaG50hxvL7DlviAzhHT1iiZnYsOshgMwahMKywqwIAQIViY9dY
4QpLGItjgx5kKFa4gp/Oe+iYQCyBaN6uR4MEJratDjVIhKfa4dVFheoUmUlzDC40e+6NJWii9uD4
WbmCR/CLIweZJWgjC+iUckzZaSHYxAxih+4zHpLXYT9+Ap//eyOTnTjjuD1cKhA9KilwlwedFliB
1T/oCXZcCbgzhpg3nfe/ztGcSG9fDAD+1e4e2atD3uPzv+IOuqX9tD+ucWZK5+b8p5xGO+Z66q8+
X/Ko7EdvVeixV7hxwbFd70lYIktMqNCFmh6wnPa3/avfAAAA//8DAKZ6myqyAwAA
H4sIAAAAAAAAA7SSTW/TQBCG7/yK0VxycaIkJST4VqmijYSEQEWIYhRt1xN7yXp3uztOgiL/d7Sx
TUpJOYC4zuf7zLwHVDmmKEvBsnJ6OL/cXV+9mX2+0+aag7u6vHlvH+7myw/bd2+XmKC9/0aSu46R
tJXTxMoaTFB6Ekw5ppNXi+ni5WS2eJ1gZXPSmGLheHgxmg259vd2OL4YTzDBOoiCMD2g87ZyvGK7
IRMwnYyn8wRPw0+JxSJBtiz0KTSdzJoEZWmVpIDplwNWFPrB3mrCFEUIKrAwHGVaw2QiwiEzAAAZ
cmnrouSQYQpdsEvQnmMwwyWUYksQaikphHWt9XfYecVMBgY3pLWFT9brfADKsAUBa6UJjKgoh0EZ
86tdzI94z4MR3JYEhvYMgcmBCsAW6kDAJQGLsFl18ATSVpUweSz4GeurRhkmj+V6EsEaZYpW821X
Bp4eauUpQEVn54BYM/kjjzLFOZ5Y+SeiBI4an1UfCUuCygYG4Zy3zivBBGvrgcuYPYPjtDAtyRA+
/vNxZKSTKlT9Qw3RsZNMqH3sEwxLcN5uVU4gYCu0yqG96VFob0hTPLskOBKbfsFOaf13X21HNklv
0K78N3/Gb7Tbfhn/RJTwxVNrP/bL/zB4j3DE6Ggy02CT4FoZFcpVuxtTDGwdJqhMTntMx83X5sUP
AAAA//8DAK0qY5KVBAAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7be2da943bd5ce54-SJC
- 7bfe3f5edbd9fac2-SJC
Cache-Control:
- no-cache, must-revalidate
Connection:
@ -206,7 +291,7 @@ interactions:
Content-Type:
- application/json
Date:
- Thu, 27 Apr 2023 00:12:36 GMT
- Sun, 30 Apr 2023 08:00:00 GMT
Server:
- cloudflare
access-control-allow-origin:
@ -218,19 +303,25 @@ interactions:
openai-organization:
- user-adtx4fhfg1qsiyzdoaxciooj
openai-processing-ms:
- '10505'
- '10898'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '3500'
x-ratelimit-limit-tokens:
- '90000'
x-ratelimit-remaining-requests:
- '3499'
x-ratelimit-remaining-tokens:
- '86482'
x-ratelimit-reset-requests:
- 17ms
x-ratelimit-reset-tokens:
- 2.345s
x-request-id:
- f593fff7d415793b53e5124283ad25c9
- f294799d2564196ef4852c84fdc8fb17
status:
code: 200
message: OK

45
tests/test_ai_config.py Normal file
View File

@ -0,0 +1,45 @@
from autogpt.config.ai_config import AIConfig
"""
Test cases for the AIConfig class, which handles loads the AI configuration
settings from a YAML file.
"""
def test_goals_are_always_lists_of_strings(tmp_path):
"""Test if the goals attribute is always a list of strings."""
yaml_content = """
ai_goals:
- Goal 1: Make a sandwich
- Goal 2, Eat the sandwich
- Goal 3 - Go to sleep
- "Goal 4: Wake up"
ai_name: McFamished
ai_role: A hungry AI
api_budget: 0.0
"""
config_file = tmp_path / "ai_settings.yaml"
config_file.write_text(yaml_content)
ai_config = AIConfig.load(config_file)
assert len(ai_config.ai_goals) == 4
assert ai_config.ai_goals[0] == "Goal 1: Make a sandwich"
assert ai_config.ai_goals[1] == "Goal 2, Eat the sandwich"
assert ai_config.ai_goals[2] == "Goal 3 - Go to sleep"
assert ai_config.ai_goals[3] == "Goal 4: Wake up"
config_file.write_text("")
ai_config.save(config_file)
yaml_content2 = """ai_goals:
- 'Goal 1: Make a sandwich'
- Goal 2, Eat the sandwich
- Goal 3 - Go to sleep
- 'Goal 4: Wake up'
ai_name: McFamished
ai_role: A hungry AI
api_budget: 0.0
"""
assert config_file.read_text() == yaml_content2

View File

@ -33,18 +33,14 @@ def test_generate_context_empty_inputs(mocker):
# Assert
expected_result = (
-1,
47,
3,
32,
2,
[
{"role": "system", "content": ""},
{
"role": "system",
"content": f"The current time and date is {time.strftime('%c')}",
},
{
"role": "system",
"content": f"This reminds you of these events from your past:\n\n\n",
},
],
)
assert result == expected_result
@ -78,5 +74,5 @@ def test_generate_context_valid_inputs():
assert result[0] >= 0
assert result[2] >= 0
assert result[1] >= 0
assert len(result[3]) >= 3 # current_context should have at least 3 messages
assert len(result[3]) >= 2 # current_context should have at least 2 messages
assert result[1] <= 2048 # token limit for GPT-3.5-turbo-0301 is 2048 tokens

View File

@ -1,12 +1,18 @@
"""
This set of unit tests is designed to test the file operations that autoGPT has access to.
"""
import os
import shutil
import unittest
from pathlib import Path
from tempfile import gettempdir
import pytest
from autogpt.commands.file_operations import (
append_to_file,
check_duplicate_operation,
delete_file,
download_file,
log_operation,
read_file,
search_files,
@ -14,118 +20,150 @@ from autogpt.commands.file_operations import (
write_to_file,
)
from autogpt.config import Config
from autogpt.workspace import Workspace
from autogpt.utils import readable_file_size
class TestFileOperations(unittest.TestCase):
"""
This set of unit tests is designed to test the file operations that autoGPT has access to.
"""
def setUp(self):
self.config = Config()
workspace_path = os.path.join(os.path.dirname(__file__), "workspace")
self.workspace_path = Workspace.make_workspace(workspace_path)
self.config.workspace_path = workspace_path
self.config.file_logger_path = os.path.join(workspace_path, "file_logger.txt")
self.workspace = Workspace(workspace_path, restrict_to_workspace=True)
self.test_file = str(self.workspace.get_path("test_file.txt"))
self.test_file2 = "test_file2.txt"
self.test_directory = str(self.workspace.get_path("test_directory"))
self.test_nested_file = str(self.workspace.get_path("nested/test_file.txt"))
self.file_content = "This is a test file.\n"
self.file_logger_logs = "file_logger.txt"
with open(self.test_file, "w") as f:
f.write(self.file_content)
def tearDown(self) -> None:
shutil.rmtree(self.workspace_path)
def test_check_duplicate_operation(self):
log_operation("write", self.test_file)
self.assertTrue(check_duplicate_operation("write", self.test_file))
# Test logging a file operation
def test_log_operation(self):
if os.path.exists(self.file_logger_logs):
os.remove(self.file_logger_logs)
log_operation("log_test", self.test_file)
with open(self.config.file_logger_path, "r") as f:
content = f.read()
self.assertIn(f"log_test: {self.test_file}", content)
# Test splitting a file into chunks
def test_split_file(self):
content = "abcdefghij"
chunks = list(split_file(content, max_length=4, overlap=1))
expected = ["abcd", "defg", "ghij"]
self.assertEqual(chunks, expected)
def test_read_file(self):
content = read_file(self.test_file)
self.assertEqual(content, self.file_content)
def test_write_to_file(self):
new_content = "This is new content.\n"
write_to_file(self.test_nested_file, new_content)
with open(self.test_nested_file, "r") as f:
content = f.read()
self.assertEqual(content, new_content)
def test_append_to_file(self):
append_text = "This is appended text.\n"
append_to_file(self.test_nested_file, append_text)
with open(self.test_nested_file, "r") as f:
content = f.read()
append_to_file(self.test_nested_file, append_text)
with open(self.test_nested_file, "r") as f:
content_after = f.read()
self.assertEqual(content_after, append_text + append_text)
def test_delete_file(self):
delete_file(self.test_file)
self.assertFalse(os.path.exists(self.test_file))
def test_search_files(self):
# Case 1: Create files A and B, search for A, and ensure we don't return A and B
file_a = self.workspace.get_path("file_a.txt")
file_b = self.workspace.get_path("file_b.txt")
with open(file_a, "w") as f:
f.write("This is file A.")
with open(file_b, "w") as f:
f.write("This is file B.")
# Create a subdirectory and place a copy of file_a in it
if not os.path.exists(self.test_directory):
os.makedirs(self.test_directory)
with open(os.path.join(self.test_directory, file_a.name), "w") as f:
f.write("This is file A in the subdirectory.")
files = search_files(str(self.workspace.root))
self.assertIn(file_a.name, files)
self.assertIn(file_b.name, files)
self.assertIn(os.path.join(Path(self.test_directory).name, file_a.name), files)
# Clean up
os.remove(file_a)
os.remove(file_b)
os.remove(os.path.join(self.test_directory, file_a.name))
os.rmdir(self.test_directory)
# Case 2: Search for a file that does not exist and make sure we don't throw
non_existent_file = "non_existent_file.txt"
files = search_files("")
self.assertNotIn(non_existent_file, files)
@pytest.fixture()
def file_content():
return "This is a test file.\n"
if __name__ == "__main__":
unittest.main()
@pytest.fixture()
def test_file(workspace, file_content):
test_file = str(workspace.get_path("test_file.txt"))
with open(test_file, "w") as f:
f.write(file_content)
return test_file
@pytest.fixture()
def test_directory(workspace):
return str(workspace.get_path("test_directory"))
@pytest.fixture()
def test_nested_file(workspace):
return str(workspace.get_path("nested/test_file.txt"))
def test_check_duplicate_operation(config, test_file):
log_operation("write", test_file)
assert check_duplicate_operation("write", test_file) is True
# Test logging a file operation
def test_log_operation(test_file, config):
file_logger_name = config.file_logger_path
if os.path.exists(file_logger_name):
os.remove(file_logger_name)
log_operation("log_test", test_file)
with open(config.file_logger_path, "r") as f:
content = f.read()
assert f"log_test: {test_file}" in content
# Test splitting a file into chunks
def test_split_file():
content = "abcdefghij"
chunks = list(split_file(content, max_length=4, overlap=1))
expected = ["abcd", "defg", "ghij"]
assert chunks == expected
def test_read_file(test_file, file_content):
content = read_file(test_file)
assert content == file_content
def test_write_to_file(config, test_nested_file):
new_content = "This is new content.\n"
write_to_file(test_nested_file, new_content)
with open(test_nested_file, "r") as f:
content = f.read()
assert content == new_content
def test_append_to_file(test_nested_file):
append_text = "This is appended text.\n"
write_to_file(test_nested_file, append_text)
append_to_file(test_nested_file, append_text)
with open(test_nested_file, "r") as f:
content_after = f.read()
assert content_after == append_text + append_text
def test_delete_file(config, test_file):
delete_file(test_file)
assert os.path.exists(test_file) is False
assert delete_file(test_file) == "Error: File has already been deleted."
def test_delete_missing_file(test_file):
os.remove(test_file)
try:
os.remove(test_file)
except FileNotFoundError as e:
error_string = str(e)
assert error_string in delete_file(test_file)
return
assert True, "Failed to test delete_file"
def test_search_files(config, workspace, test_directory):
# Case 1: Create files A and B, search for A, and ensure we don't return A and B
file_a = workspace.get_path("file_a.txt")
file_b = workspace.get_path("file_b.txt")
with open(file_a, "w") as f:
f.write("This is file A.")
with open(file_b, "w") as f:
f.write("This is file B.")
# Create a subdirectory and place a copy of file_a in it
if not os.path.exists(test_directory):
os.makedirs(test_directory)
with open(os.path.join(test_directory, file_a.name), "w") as f:
f.write("This is file A in the subdirectory.")
files = search_files(str(workspace.root))
assert file_a.name in files
assert file_b.name in files
assert os.path.join(Path(test_directory).name, file_a.name) in files
# Clean up
os.remove(file_a)
os.remove(file_b)
os.remove(os.path.join(test_directory, file_a.name))
os.rmdir(test_directory)
# Case 2: Search for a file that does not exist and make sure we don't throw
non_existent_file = "non_existent_file.txt"
files = search_files("")
assert non_existent_file not in files
def test_download_file():
url = "https://github.com/Significant-Gravitas/Auto-GPT/archive/refs/tags/v0.2.2.tar.gz"
local_name = os.path.join(gettempdir(), "auto-gpt.tar.gz")
size = 365023
readable_size = readable_file_size(size)
assert (
download_file(url, local_name)
== f'Successfully downloaded and locally stored file: "{local_name}"! (Size: {readable_size})'
)
assert os.path.isfile(local_name) is True
assert os.path.getsize(local_name) == size
url = "https://github.com/Significant-Gravitas/Auto-GPT/archive/refs/tags/v0.0.0.tar.gz"
assert "Got an HTTP Error whilst trying to download file" in download_file(
url, local_name
)
url = "https://thiswebsiteiswrong.hmm/v0.0.0.tar.gz"
assert "Failed to establish a new connection:" in download_file(url, local_name)

View File

@ -1,6 +1,5 @@
# Generated by CodiumAI
import time
import unittest
from autogpt.spinner import Spinner
@ -29,40 +28,43 @@ ALMOST_DONE_MESSAGE = "Almost done..."
PLEASE_WAIT = "Please wait..."
class TestSpinner(unittest.TestCase):
def test_spinner_initializes_with_default_values(self):
"""Tests that the spinner initializes with default values."""
with Spinner() as spinner:
self.assertEqual(spinner.message, "Loading...")
self.assertEqual(spinner.delay, 0.1)
def test_spinner_initializes_with_default_values():
"""Tests that the spinner initializes with default values."""
with Spinner() as spinner:
assert spinner.message == "Loading..."
assert spinner.delay == 0.1
def test_spinner_initializes_with_custom_values(self):
"""Tests that the spinner initializes with custom message and delay values."""
with Spinner(message=PLEASE_WAIT, delay=0.2) as spinner:
self.assertEqual(spinner.message, PLEASE_WAIT)
self.assertEqual(spinner.delay, 0.2)
#
def test_spinner_stops_spinning(self):
"""Tests that the spinner starts spinning and stops spinning without errors."""
with Spinner() as spinner:
time.sleep(1)
spinner.update_message(ALMOST_DONE_MESSAGE)
time.sleep(1)
self.assertFalse(spinner.running)
def test_spinner_initializes_with_custom_values():
"""Tests that the spinner initializes with custom message and delay values."""
with Spinner(message=PLEASE_WAIT, delay=0.2) as spinner:
assert spinner.message == PLEASE_WAIT
assert spinner.delay == 0.2
def test_spinner_updates_message_and_still_spins(self):
"""Tests that the spinner message can be updated while the spinner is running and the spinner continues spinning."""
with Spinner() as spinner:
self.assertTrue(spinner.running)
time.sleep(1)
spinner.update_message(ALMOST_DONE_MESSAGE)
time.sleep(1)
self.assertEqual(spinner.message, ALMOST_DONE_MESSAGE)
self.assertFalse(spinner.running)
def test_spinner_can_be_used_as_context_manager(self):
"""Tests that the spinner can be used as a context manager."""
with Spinner() as spinner:
self.assertTrue(spinner.running)
self.assertFalse(spinner.running)
#
def test_spinner_stops_spinning():
"""Tests that the spinner starts spinning and stops spinning without errors."""
with Spinner() as spinner:
time.sleep(1)
spinner.update_message(ALMOST_DONE_MESSAGE)
time.sleep(1)
assert spinner.running == False
def test_spinner_updates_message_and_still_spins():
"""Tests that the spinner message can be updated while the spinner is running and the spinner continues spinning."""
with Spinner() as spinner:
assert spinner.running == True
time.sleep(1)
spinner.update_message(ALMOST_DONE_MESSAGE)
time.sleep(1)
assert spinner.message == ALMOST_DONE_MESSAGE
assert spinner.running == False
def test_spinner_can_be_used_as_context_manager():
"""Tests that the spinner can be used as a context manager."""
with Spinner() as spinner:
assert spinner.running == True
assert spinner.running == False

View File

@ -41,7 +41,10 @@ def before_record_request(request):
def filter_hostnames(request):
allowed_hostnames = ["api.openai.com"] # List of hostnames you want to allow
allowed_hostnames = [
"api.openai.com",
"localhost:50337",
] # List of hostnames you want to allow
if any(hostname in request.url for hostname in allowed_hostnames):
return request