from colorama import Fore, Style from autogpt.app import execute_command, get_command from autogpt.config import Config from autogpt.json_utils.json_fix_llm import fix_json_using_multiple_techniques from autogpt.json_utils.utilities import LLM_DEFAULT_RESPONSE_FORMAT, validate_json from autogpt.llm import chat_with_ai, create_chat_completion, create_chat_message from autogpt.logs import logger, print_assistant_thoughts from autogpt.speech import say_text from autogpt.spinner import Spinner from autogpt.utils import clean_input, send_chat_message_to_user from autogpt.workspace import Workspace class Agent: """Agent class for interacting with Auto-GPT. Attributes: ai_name: The name of the agent. memory: The memory object to use. full_message_history: The full message history. next_action_count: The number of actions to execute. system_prompt: The system prompt is the initial prompt that defines everything the AI needs to know to achieve its task successfully. Currently, the dynamic and customizable information in the system prompt are ai_name, description and goals. triggering_prompt: The last sentence the AI will see before answering. For Auto-GPT, this prompt is: Determine which next command to use, and respond using the format specified above: The triggering prompt is not part of the system prompt because between the system prompt and the triggering prompt we have contextual information that can distract the AI and make it forget that its goal is to find the next task to achieve. SYSTEM PROMPT CONTEXTUAL INFORMATION (memory, previous conversations, anything relevant) TRIGGERING PROMPT The triggering prompt reminds the AI about its short term meta task (defining the next task) """ def __init__( self, ai_name, memory, full_message_history, next_action_count, command_registry, config, system_prompt, triggering_prompt, workspace_directory, ): cfg = Config() self.ai_name = ai_name self.memory = memory self.summary_memory = ( "I was created." # Initial memory necessary to avoid hilucination ) self.last_memory_index = 0 self.full_message_history = full_message_history self.next_action_count = next_action_count self.command_registry = command_registry self.config = config self.system_prompt = system_prompt self.triggering_prompt = triggering_prompt self.workspace = Workspace(workspace_directory, cfg.restrict_to_workspace) def start_interaction_loop(self): # Interaction Loop cfg = Config() loop_count = 0 command_name = None arguments = None user_input = "" while True: # Discontinue if continuous limit is reached loop_count += 1 if ( cfg.continuous_mode and cfg.continuous_limit > 0 and loop_count > cfg.continuous_limit ): logger.typewriter_log( "Continuous Limit Reached: ", Fore.YELLOW, f"{cfg.continuous_limit}" ) send_chat_message_to_user( f"Continuous Limit Reached: \n {cfg.continuous_limit}" ) break send_chat_message_to_user("Thinking... \n") # Send message to AI, get response with Spinner("Thinking... "): assistant_reply = chat_with_ai( self, self.system_prompt, self.triggering_prompt, self.full_message_history, self.memory, cfg.fast_token_limit, ) # TODO: This hardcodes the model to use GPT3.5. Make this an argument assistant_reply_json = fix_json_using_multiple_techniques(assistant_reply) for plugin in cfg.plugins: if not plugin.can_handle_post_planning(): continue assistant_reply_json = plugin.post_planning(self, assistant_reply_json) # Print Assistant thoughts if assistant_reply_json != {}: validate_json(assistant_reply_json, LLM_DEFAULT_RESPONSE_FORMAT) # Get command name and arguments try: print_assistant_thoughts( self.ai_name, assistant_reply_json, cfg.speak_mode ) command_name, arguments = get_command(assistant_reply_json) if cfg.speak_mode: say_text(f"I want to execute {command_name}") send_chat_message_to_user("Thinking... \n") arguments = self._resolve_pathlike_command_args(arguments) except Exception as e: logger.error("Error: \n", str(e)) if not cfg.continuous_mode and self.next_action_count == 0: # ### GET USER AUTHORIZATION TO EXECUTE COMMAND ### # Get key press: Prompt the user to press enter to continue or escape # to exit self.user_input = "" send_chat_message_to_user( "NEXT ACTION: \n " + f"COMMAND = {command_name} \n " f"ARGUMENTS = {arguments}" ) logger.typewriter_log( "NEXT ACTION: ", Fore.CYAN, f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL} " f"ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}", ) print( "Enter 'y' to authorise command, 'y -N' to run N continuous commands, 's' to run self-feedback commands" "'n' to exit program, or enter feedback for " f"{self.ai_name}...", flush=True, ) while True: console_input = "" if cfg.chat_messages_enabled: console_input = clean_input("Waiting for your response...") else: console_input = clean_input( Fore.MAGENTA + "Input:" + Style.RESET_ALL ) if console_input.lower().strip() == cfg.authorise_key: user_input = "GENERATE NEXT COMMAND JSON" break elif console_input.lower().strip() == "s": logger.typewriter_log( "-=-=-=-=-=-=-= THOUGHTS, REASONING, PLAN AND CRITICISM WILL NOW BE VERIFIED BY AGENT -=-=-=-=-=-=-=", Fore.GREEN, "", ) self_feedback_resp = self.get_self_feedback(self.full_message_history, assistant_reply_json, cfg.fast_llm_model ) logger.typewriter_log( f"SELF FEEDBACK: {self_feedback_resp}", Fore.YELLOW, "", ) if self_feedback_resp[0].lower().strip() == cfg.authorise_key: user_input = "GENERATE NEXT COMMAND JSON" else: user_input = self_feedback_resp command_name = "human_feedback" break elif console_input.lower().strip() == "": print("Invalid input format.") continue elif console_input.lower().startswith(f"{cfg.authorise_key} -"): try: self.next_action_count = abs( int(console_input.split(" ")[1]) ) user_input = "GENERATE NEXT COMMAND JSON" except ValueError: print( f"Invalid input format. Please enter '{cfg.authorise_key} -N' where N is" " the number of continuous tasks." ) continue break elif console_input.lower() == cfg.exit_key: user_input = "EXIT" break else: user_input = console_input command_name = "human_feedback" break if user_input == "GENERATE NEXT COMMAND JSON": logger.typewriter_log( "-=-=-=-=-=-=-= COMMAND AUTHORISED BY USER -=-=-=-=-=-=-=", Fore.MAGENTA, "", ) elif user_input == "EXIT": send_chat_message_to_user("Exiting...") print("Exiting...", flush=True) break else: # Print command send_chat_message_to_user( "NEXT ACTION: \n " + f"COMMAND = {command_name} \n " f"ARGUMENTS = {arguments}" ) logger.typewriter_log( "NEXT ACTION: ", Fore.CYAN, f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL}" f" ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}", ) # Execute command if command_name is not None and command_name.lower().startswith("error"): result = ( f"Command {command_name} threw the following error: {arguments}" ) elif command_name == "human_feedback": result = f"Human feedback: {user_input}" else: for plugin in cfg.plugins: if not plugin.can_handle_pre_command(): continue command_name, arguments = plugin.pre_command( command_name, arguments ) command_result = execute_command( self.command_registry, command_name, arguments, self.config.prompt_generator, ) result = f"Command {command_name} returned: " f"{command_result}" for plugin in cfg.plugins: if not plugin.can_handle_post_command(): continue result = plugin.post_command(command_name, result) if self.next_action_count > 0: self.next_action_count -= 1 # Check if there's a result from the command append it to the message # history if result is not None: self.full_message_history.append(create_chat_message("system", result)) logger.typewriter_log("SYSTEM: ", Fore.YELLOW, result) else: self.full_message_history.append( create_chat_message("system", "Unable to execute command") ) logger.typewriter_log( "SYSTEM: ", Fore.YELLOW, "Unable to execute command" ) def _resolve_pathlike_command_args(self, command_args): if "directory" in command_args and command_args["directory"] in {"", "/"}: command_args["directory"] = str(self.workspace.root) else: for pathlike in ["filename", "directory", "clone_path"]: if pathlike in command_args: command_args[pathlike] = str( self.workspace.get_path(command_args[pathlike]) ) return command_args def get_self_feedback(self, full_message_history, latest_response_json, llm_model: str) -> str: """Generates a feedback response based on the provided thoughts dictionary. This method takes in a dictionary of thoughts containing keys such as 'reasoning', 'plan', 'thoughts', and 'criticism'. It combines these elements into a single feedback message and uses the create_chat_completion() function to generate a response based on the input message. Args: thoughts (dict): A dictionary containing thought elements like reasoning, plan, thoughts, and criticism. Returns: str: A feedback response generated using the provided thoughts dictionary. """ ai_role = self.config.ai_role thoughts = latest_response_json.get("thoughts", {}) command = latest_response_json.get("command", {}) from autogpt.llm.token_counter import count_message_tokens import json # Get ~2000 tokens from the full message history # !!WARNING: THIS IMPLEMENTATION IS BAD - CAUSES BUG SIMILAR TO THIS: https://github.com/Significant-Gravitas/Auto-GPT/pull/3619 trimmed_message_history = [] for i in range(len(full_message_history) - 1, -1, -1): message = full_message_history[i] # Skip all messages from the user if message["role"] == "user": continue # If the message is from the assistant, remove the "thoughts" dictionary from the content elif message["role"] == "assistant": try: content_dict = json.loads(message["content"]) content_dict = content_dict.copy() if "thoughts" in content_dict: del content_dict["thoughts"] message["content"] = json.dumps(content_dict) except: pass trimmed_message_history.append(message) feedback_prompt = f"""Below is a message from an AI agent with the role: '{ai_role}'. Please review the provided Recent History, Agent's Plan, The Agent's proposed action and their Reasoning. If the agent's command makes sense and the agent is on the right track, respond with the letter 'Y' followed by a space. If the provided information is not suitable for achieving the role's objectives or a red flag is raised, please clearly and concisely tell the agent about the issue and suggesting an alternative action. """ reasoning = thoughts.get("reasoning", "") plan = thoughts.get("plan", "") # thought = thoughts.get("thoughts", "") # criticism = thoughts.get("criticism", "") # feedback_thoughts = thought + reasoning + plan + criticism return create_chat_completion( [ {"role": "system", "content": f""""You are AgentReviewerGPT.\n\nRespond with Y if the agent passes your review.\n\nBe wary of the following red flags in the agent's behaviour: - The agent is repeating itself. - The agent is stuck in a loop. - The agent is using '' instead of the actual text. - The agent is using the wrong command for the situation. - The agent is executing a python file that does not exist (it should check if the file exists and read it's contents before executing it). Notes: + Hardcoded paths are okay""" }, {"role": "user", "content": f"{feedback_prompt}\n\nRecent History:\n{trimmed_message_history}\n\n\n\n\Agent's Plan:\n{plan}\n\nAgent's Proposed Action:\n{command}\n\nAgent's Reasoning:\n{reasoning}" } ], llm_model, )