mirror of
https://github.com/Significant-Gravitas/Auto-GPT.git
synced 2025-04-03 15:32:05 +08:00
353 lines
16 KiB
Python
353 lines
16 KiB
Python
from colorama import Fore, Style
|
|
|
|
from autogpt.app import execute_command, get_command
|
|
from autogpt.config import Config
|
|
from autogpt.json_utils.json_fix_llm import fix_json_using_multiple_techniques
|
|
from autogpt.json_utils.utilities import LLM_DEFAULT_RESPONSE_FORMAT, validate_json
|
|
from autogpt.llm import chat_with_ai, create_chat_completion, create_chat_message
|
|
from autogpt.logs import logger, print_assistant_thoughts
|
|
from autogpt.speech import say_text
|
|
from autogpt.spinner import Spinner
|
|
from autogpt.utils import clean_input, send_chat_message_to_user
|
|
from autogpt.workspace import Workspace
|
|
|
|
|
|
class Agent:
|
|
"""Agent class for interacting with Auto-GPT.
|
|
|
|
Attributes:
|
|
ai_name: The name of the agent.
|
|
memory: The memory object to use.
|
|
full_message_history: The full message history.
|
|
next_action_count: The number of actions to execute.
|
|
system_prompt: The system prompt is the initial prompt that defines everything
|
|
the AI needs to know to achieve its task successfully.
|
|
Currently, the dynamic and customizable information in the system prompt are
|
|
ai_name, description and goals.
|
|
|
|
triggering_prompt: The last sentence the AI will see before answering.
|
|
For Auto-GPT, this prompt is:
|
|
Determine which next command to use, and respond using the format specified
|
|
above:
|
|
The triggering prompt is not part of the system prompt because between the
|
|
system prompt and the triggering
|
|
prompt we have contextual information that can distract the AI and make it
|
|
forget that its goal is to find the next task to achieve.
|
|
SYSTEM PROMPT
|
|
CONTEXTUAL INFORMATION (memory, previous conversations, anything relevant)
|
|
TRIGGERING PROMPT
|
|
|
|
The triggering prompt reminds the AI about its short term meta task
|
|
(defining the next task)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
ai_name,
|
|
memory,
|
|
full_message_history,
|
|
next_action_count,
|
|
command_registry,
|
|
config,
|
|
system_prompt,
|
|
triggering_prompt,
|
|
workspace_directory,
|
|
):
|
|
cfg = Config()
|
|
self.ai_name = ai_name
|
|
self.memory = memory
|
|
self.summary_memory = (
|
|
"I was created." # Initial memory necessary to avoid hilucination
|
|
)
|
|
self.last_memory_index = 0
|
|
self.full_message_history = full_message_history
|
|
self.next_action_count = next_action_count
|
|
self.command_registry = command_registry
|
|
self.config = config
|
|
self.system_prompt = system_prompt
|
|
self.triggering_prompt = triggering_prompt
|
|
self.workspace = Workspace(workspace_directory, cfg.restrict_to_workspace)
|
|
|
|
def start_interaction_loop(self):
|
|
# Interaction Loop
|
|
cfg = Config()
|
|
loop_count = 0
|
|
command_name = None
|
|
arguments = None
|
|
user_input = ""
|
|
|
|
while True:
|
|
# Discontinue if continuous limit is reached
|
|
loop_count += 1
|
|
if (
|
|
cfg.continuous_mode
|
|
and cfg.continuous_limit > 0
|
|
and loop_count > cfg.continuous_limit
|
|
):
|
|
logger.typewriter_log(
|
|
"Continuous Limit Reached: ", Fore.YELLOW, f"{cfg.continuous_limit}"
|
|
)
|
|
send_chat_message_to_user(
|
|
f"Continuous Limit Reached: \n {cfg.continuous_limit}"
|
|
)
|
|
break
|
|
send_chat_message_to_user("Thinking... \n")
|
|
# Send message to AI, get response
|
|
with Spinner("Thinking... "):
|
|
assistant_reply = chat_with_ai(
|
|
self,
|
|
self.system_prompt,
|
|
self.triggering_prompt,
|
|
self.full_message_history,
|
|
self.memory,
|
|
cfg.fast_token_limit,
|
|
) # TODO: This hardcodes the model to use GPT3.5. Make this an argument
|
|
|
|
assistant_reply_json = fix_json_using_multiple_techniques(assistant_reply)
|
|
for plugin in cfg.plugins:
|
|
if not plugin.can_handle_post_planning():
|
|
continue
|
|
assistant_reply_json = plugin.post_planning(self, assistant_reply_json)
|
|
|
|
# Print Assistant thoughts
|
|
if assistant_reply_json != {}:
|
|
validate_json(assistant_reply_json, LLM_DEFAULT_RESPONSE_FORMAT)
|
|
# Get command name and arguments
|
|
try:
|
|
print_assistant_thoughts(
|
|
self.ai_name, assistant_reply_json, cfg.speak_mode
|
|
)
|
|
command_name, arguments = get_command(assistant_reply_json)
|
|
if cfg.speak_mode:
|
|
say_text(f"I want to execute {command_name}")
|
|
|
|
send_chat_message_to_user("Thinking... \n")
|
|
arguments = self._resolve_pathlike_command_args(arguments)
|
|
|
|
except Exception as e:
|
|
logger.error("Error: \n", str(e))
|
|
|
|
if not cfg.continuous_mode and self.next_action_count == 0:
|
|
# ### GET USER AUTHORIZATION TO EXECUTE COMMAND ###
|
|
# Get key press: Prompt the user to press enter to continue or escape
|
|
# to exit
|
|
self.user_input = ""
|
|
send_chat_message_to_user(
|
|
"NEXT ACTION: \n " + f"COMMAND = {command_name} \n "
|
|
f"ARGUMENTS = {arguments}"
|
|
)
|
|
logger.typewriter_log(
|
|
"NEXT ACTION: ",
|
|
Fore.CYAN,
|
|
f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL} "
|
|
f"ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}",
|
|
)
|
|
print(
|
|
"Enter 'y' to authorise command, 'y -N' to run N continuous commands, 's' to run self-feedback commands"
|
|
"'n' to exit program, or enter feedback for "
|
|
f"{self.ai_name}...",
|
|
flush=True,
|
|
)
|
|
while True:
|
|
console_input = ""
|
|
if cfg.chat_messages_enabled:
|
|
console_input = clean_input("Waiting for your response...")
|
|
else:
|
|
console_input = clean_input(
|
|
Fore.MAGENTA + "Input:" + Style.RESET_ALL
|
|
)
|
|
if console_input.lower().strip() == cfg.authorise_key:
|
|
user_input = "GENERATE NEXT COMMAND JSON"
|
|
break
|
|
elif console_input.lower().strip() == "s":
|
|
logger.typewriter_log(
|
|
"-=-=-=-=-=-=-= THOUGHTS, REASONING, PLAN AND CRITICISM WILL NOW BE VERIFIED BY AGENT -=-=-=-=-=-=-=",
|
|
Fore.GREEN,
|
|
"",
|
|
)
|
|
|
|
self_feedback_resp = self.get_self_feedback(self.full_message_history,
|
|
assistant_reply_json, cfg.fast_llm_model
|
|
)
|
|
logger.typewriter_log(
|
|
f"SELF FEEDBACK: {self_feedback_resp}",
|
|
Fore.YELLOW,
|
|
"",
|
|
)
|
|
if self_feedback_resp[0].lower().strip() == cfg.authorise_key:
|
|
user_input = "GENERATE NEXT COMMAND JSON"
|
|
else:
|
|
user_input = self_feedback_resp
|
|
command_name = "human_feedback"
|
|
break
|
|
elif console_input.lower().strip() == "":
|
|
print("Invalid input format.")
|
|
continue
|
|
elif console_input.lower().startswith(f"{cfg.authorise_key} -"):
|
|
try:
|
|
self.next_action_count = abs(
|
|
int(console_input.split(" ")[1])
|
|
)
|
|
user_input = "GENERATE NEXT COMMAND JSON"
|
|
except ValueError:
|
|
print(
|
|
f"Invalid input format. Please enter '{cfg.authorise_key} -N' where N is"
|
|
" the number of continuous tasks."
|
|
)
|
|
continue
|
|
break
|
|
elif console_input.lower() == cfg.exit_key:
|
|
user_input = "EXIT"
|
|
break
|
|
else:
|
|
user_input = console_input
|
|
command_name = "human_feedback"
|
|
break
|
|
|
|
if user_input == "GENERATE NEXT COMMAND JSON":
|
|
logger.typewriter_log(
|
|
"-=-=-=-=-=-=-= COMMAND AUTHORISED BY USER -=-=-=-=-=-=-=",
|
|
Fore.MAGENTA,
|
|
"",
|
|
)
|
|
elif user_input == "EXIT":
|
|
send_chat_message_to_user("Exiting...")
|
|
print("Exiting...", flush=True)
|
|
break
|
|
else:
|
|
# Print command
|
|
send_chat_message_to_user(
|
|
"NEXT ACTION: \n " + f"COMMAND = {command_name} \n "
|
|
f"ARGUMENTS = {arguments}"
|
|
)
|
|
|
|
logger.typewriter_log(
|
|
"NEXT ACTION: ",
|
|
Fore.CYAN,
|
|
f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL}"
|
|
f" ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}",
|
|
)
|
|
|
|
# Execute command
|
|
if command_name is not None and command_name.lower().startswith("error"):
|
|
result = (
|
|
f"Command {command_name} threw the following error: {arguments}"
|
|
)
|
|
elif command_name == "human_feedback":
|
|
result = f"Human feedback: {user_input}"
|
|
else:
|
|
for plugin in cfg.plugins:
|
|
if not plugin.can_handle_pre_command():
|
|
continue
|
|
command_name, arguments = plugin.pre_command(
|
|
command_name, arguments
|
|
)
|
|
command_result = execute_command(
|
|
self.command_registry,
|
|
command_name,
|
|
arguments,
|
|
self.config.prompt_generator,
|
|
)
|
|
result = f"Command {command_name} returned: " f"{command_result}"
|
|
|
|
for plugin in cfg.plugins:
|
|
if not plugin.can_handle_post_command():
|
|
continue
|
|
result = plugin.post_command(command_name, result)
|
|
if self.next_action_count > 0:
|
|
self.next_action_count -= 1
|
|
|
|
# Check if there's a result from the command append it to the message
|
|
# history
|
|
if result is not None:
|
|
self.full_message_history.append(create_chat_message("system", result))
|
|
logger.typewriter_log("SYSTEM: ", Fore.YELLOW, result)
|
|
else:
|
|
self.full_message_history.append(
|
|
create_chat_message("system", "Unable to execute command")
|
|
)
|
|
logger.typewriter_log(
|
|
"SYSTEM: ", Fore.YELLOW, "Unable to execute command"
|
|
)
|
|
|
|
def _resolve_pathlike_command_args(self, command_args):
|
|
if "directory" in command_args and command_args["directory"] in {"", "/"}:
|
|
command_args["directory"] = str(self.workspace.root)
|
|
else:
|
|
for pathlike in ["filename", "directory", "clone_path"]:
|
|
if pathlike in command_args:
|
|
command_args[pathlike] = str(
|
|
self.workspace.get_path(command_args[pathlike])
|
|
)
|
|
return command_args
|
|
|
|
def get_self_feedback(self, full_message_history, latest_response_json, llm_model: str) -> str:
|
|
"""Generates a feedback response based on the provided thoughts dictionary.
|
|
This method takes in a dictionary of thoughts containing keys such as 'reasoning',
|
|
'plan', 'thoughts', and 'criticism'. It combines these elements into a single
|
|
feedback message and uses the create_chat_completion() function to generate a
|
|
response based on the input message.
|
|
Args:
|
|
thoughts (dict): A dictionary containing thought elements like reasoning,
|
|
plan, thoughts, and criticism.
|
|
Returns:
|
|
str: A feedback response generated using the provided thoughts dictionary.
|
|
"""
|
|
ai_role = self.config.ai_role
|
|
thoughts = latest_response_json.get("thoughts", {})
|
|
command = latest_response_json.get("command", {})
|
|
|
|
|
|
from autogpt.llm.token_counter import count_message_tokens
|
|
import json
|
|
|
|
# Get ~2000 tokens from the full message history
|
|
# !!WARNING: THIS IMPLEMENTATION IS BAD - CAUSES BUG SIMILAR TO THIS: https://github.com/Significant-Gravitas/Auto-GPT/pull/3619
|
|
trimmed_message_history = []
|
|
for i in range(len(full_message_history) - 1, -1, -1):
|
|
message = full_message_history[i]
|
|
# Skip all messages from the user
|
|
if message["role"] == "user":
|
|
continue
|
|
# If the message is from the assistant, remove the "thoughts" dictionary from the content
|
|
elif message["role"] == "assistant":
|
|
try:
|
|
content_dict = json.loads(message["content"])
|
|
content_dict = content_dict.copy()
|
|
if "thoughts" in content_dict:
|
|
del content_dict["thoughts"]
|
|
message["content"] = json.dumps(content_dict)
|
|
except:
|
|
pass
|
|
trimmed_message_history.append(message)
|
|
|
|
|
|
|
|
|
|
feedback_prompt = f"""Below is a message from an AI agent with the role: '{ai_role}'.
|
|
Please review the provided Recent History, Agent's Plan, The Agent's proposed action and their Reasoning.
|
|
|
|
If the agent's command makes sense and the agent is on the right track, respond with the letter 'Y' followed by a space.
|
|
If the provided information is not suitable for achieving the role's objectives or a red flag is raised, please clearly and concisely tell the agent about the issue and suggesting an alternative action.
|
|
"""
|
|
reasoning = thoughts.get("reasoning", "")
|
|
plan = thoughts.get("plan", "")
|
|
# thought = thoughts.get("thoughts", "")
|
|
# criticism = thoughts.get("criticism", "")
|
|
# feedback_thoughts = thought + reasoning + plan + criticism
|
|
return create_chat_completion(
|
|
[
|
|
{"role": "system", "content": f""""You are AgentReviewerGPT.\n\nRespond with Y if the agent passes your review.\n\nBe wary of the following red flags in the agent's behaviour:
|
|
- The agent is repeating itself.
|
|
- The agent is stuck in a loop.
|
|
- The agent is using '<text>' instead of the actual text.
|
|
- The agent is using the wrong command for the situation.
|
|
- The agent is executing a python file that does not exist (it should check if the file exists and read it's contents before executing it).
|
|
|
|
Notes:
|
|
+ Hardcoded paths are okay""" },
|
|
{"role": "user", "content": f"{feedback_prompt}\n\nRecent History:\n{trimmed_message_history}\n\n\n\n\Agent's Plan:\n{plan}\n\nAgent's Proposed Action:\n{command}\n\nAgent's Reasoning:\n{reasoning}" }
|
|
],
|
|
llm_model,
|
|
)
|