mirror of
https://github.com/LmeSzinc/AzurLaneAutoScript.git
synced 2025-01-09 10:17:38 +08:00
Upd: Research preset using E2 projects and research_optimizer
This commit is contained in:
parent
bad2995982
commit
e3fdef94bb
@ -55,8 +55,8 @@ PROJECT_TABLE = """
|
||||
34 4 Marcopolo-2.5 766.6697864 0 0 0 0 2.25 0.04
|
||||
35 4 Marcopolo-5 485.7871007 0 0 0 0 3.75 0.06
|
||||
36 4 Marcopolo-8 200.3313937 0 0 0 0 6 0.096
|
||||
37 4 EB-2 203.9216684 0 0 0 0 0 0.024
|
||||
38 4 EP-2 203.9216684 0 0 0 0 0 0.06
|
||||
37 4 Z-2 203.9216684 0 0 0 0 0 0.024
|
||||
38 4 A-2 203.9216684 0 0 0 0 0 0.06
|
||||
39 4 G-1.5 582.001119 0.104 0.104 0.299 0.299 0.299 0.025
|
||||
40 4 G-2.5 402.5500509 0.135 0.135 0.403333333 0.403333333 0.403333333 0.04
|
||||
41 4 G-4 305.1449135 0.2585 0.2585 0.723333333 0.723333333 0.723333333 0.12
|
||||
@ -111,8 +111,8 @@ PROJECT_TABLE = """
|
||||
90 2 C-6 331.5425296 0 0 0 0 0 0
|
||||
91 2 C-8 224.3791833 0 0 0 0 0 0
|
||||
92 2 C-12 170.3707535 0 0 0 0 0 0
|
||||
93 2 EB-2 222.8618262 0 0 0 0 0 0
|
||||
94 2 EP-2 222.8618262 0 0 0 0 0 0
|
||||
93 2 Z-2 222.8618262 0 0 0 0 0 0
|
||||
94 2 A-2 222.8618262 0 0 0 0 0 0
|
||||
95 2 G-1.5 636.0571355 0 0 0 0 0 0
|
||||
96 2 G-2.5 439.9387285 0 0 0 0 0 0
|
||||
97 2 G-4 333.4866434 0 0 0 0 0 0
|
||||
@ -167,8 +167,8 @@ PROJECT_TABLE = """
|
||||
146 3 C-6 328.1807665 0 0 0 0 0 0
|
||||
147 3 C-8 222.1040313 0 0 0 0 0 0
|
||||
148 3 C-12 168.6432343 0 0 0 0 0 0
|
||||
149 3 EB-2 220.6020598 0 0 0 0 0 0
|
||||
150 3 EP-2 220.6020598 0 0 0 0 0 0
|
||||
149 3 Z-2 220.6020598 0 0 0 0 0 0
|
||||
150 3 A-2 220.6020598 0 0 0 0 0 0
|
||||
151 3 G-1.5 629.6076661 0 0 0 0 0 0
|
||||
152 3 G-2.5 435.4778534 0 0 0 0 0 0
|
||||
153 3 G-4 330.1051674 0 0 0 0 0 0
|
||||
@ -245,8 +245,8 @@ PROJECT_TABLE_S4 = """
|
||||
34 4 Marcopolo-2.5 766.6697864 0 0 0 0 2.25 0.04
|
||||
35 4 Marcopolo-5 485.7871007 0 0 0 0 3.75 0.06
|
||||
36 4 Marcopolo-8 200.3313937 0 0 0 0 6 0.096
|
||||
37 4 EB-2 647.3855544 0 0 0 0 0 0.024
|
||||
38 4 EP-2 647.3855544 0 0 0 0 0 0.06
|
||||
37 4 Z-2 647.3855544 0 0 0 0 0 0.024
|
||||
38 4 A-2 647.3855544 0 0 0 0 0 0.06
|
||||
39 4 G-1.5 1847.665921 0.104 0.104 0.299 0.299 0.299 0.025
|
||||
40 4 G-2.5 1277.966633 0.135 0.135 0.403333333 0.403333333 0.403333333 0.04
|
||||
41 4 G-4 968.7367243 0.2585 0.2585 0.723333333 0.723333333 0.723333333 0.12
|
||||
@ -646,7 +646,7 @@ FILTER_REGEX = re.compile('([s\!][1234])?'
|
||||
'|gascogne|champagne|cheshire|drake|mainz|odin'
|
||||
'|anchorage|hakuryu|agir|august|marcopolo)?'
|
||||
'(dr|pry)?'
|
||||
'([bcdeghqt])?'
|
||||
'([bcdeghqtaz])?'
|
||||
'-?'
|
||||
'(\d.\d|\d\d?)?')
|
||||
FILTER_ATTR = ('series', 'ship', 'ship_rarity', 'genre', 'duration')
|
||||
@ -968,6 +968,8 @@ class FilterSimulator:
|
||||
target = np.array([513, 513, 343, 343, 343, 150])
|
||||
|
||||
def __init__(self, string):
|
||||
string = string.replace('E-315', 'A2')
|
||||
string = string.replace('E-031', 'Z2')
|
||||
self.string = string
|
||||
self.pool = ResearchPool(string)
|
||||
|
||||
@ -1007,15 +1009,20 @@ def join_filter(selection):
|
||||
return ' > '.join(selection)
|
||||
|
||||
|
||||
def beautify_filter(string):
|
||||
if isinstance(string, str):
|
||||
string = split_filter(string)
|
||||
out = ''
|
||||
for index in range(0, len(string), 8):
|
||||
row = string[index:index + 8]
|
||||
out += ' > ' + join_filter(row) + '\n'
|
||||
out = '\n ' + out.strip('> ')
|
||||
return out
|
||||
def beautify_filter(list_filter):
|
||||
if isinstance(list_filter, str):
|
||||
list_filter = split_filter(list_filter)
|
||||
|
||||
out = []
|
||||
length = 0
|
||||
for selection in list_filter:
|
||||
if length + len(selection) + 3 > 70:
|
||||
out.append('\n')
|
||||
length = 0
|
||||
out.append(selection)
|
||||
length += len(selection) + 3
|
||||
string = ' > '.join(out).strip('\n >').replace(' > \n', '\n').replace('\n ', '\n')
|
||||
return string
|
||||
|
||||
|
||||
def position_change(string, position):
|
||||
@ -1118,7 +1125,7 @@ class BruteForceOptimizer:
|
||||
# 切魔方:'B > T > E'
|
||||
# 只做0.5h魔方:'B > T > E > H1 > H2 > H4'
|
||||
# 不切魔方:'B > T > E > H'
|
||||
ResearchPool.remove_projects = 'B > T > E > H1 > H2 > H4'
|
||||
ResearchPool.remove_projects = 'B > T > H1 > H2 > H4'
|
||||
# 每日活跃时间,按天计算
|
||||
# 超出活跃时间后,仍在挂项目,但不再开始新项目
|
||||
FilterSimulator.active = 24 / 24
|
||||
@ -1140,7 +1147,7 @@ if __name__ == '__main__':
|
||||
"""
|
||||
这个文件包含模拟器和优化器两部分,取消注释对应的代码来运行
|
||||
Alas用户运行需要额外安装numba,无指定版本
|
||||
非Alas用户运行需要python>=3.7,安装 numba numpy tqdm, 无指定版本
|
||||
非Alas用户运行需要python>=3.7,安装 numba==0.45.1 llvmlite==0.29.0 numpy tqdm
|
||||
|
||||
过滤器与Alas内的过滤器基本相同,编写参考 https://github.com/LmeSzinc/AzurLaneAutoScript/wiki/filter_string_cn
|
||||
但需要注意:
|
||||
@ -1162,23 +1169,27 @@ if __name__ == '__main__':
|
||||
模拟大量用户使用同一个过滤器的平均毕业时间和毕业时获取物品的平均数量
|
||||
取消注释这些代码,将你的过滤器粘贴至这里,并运行,在8700k上需要约4.5分钟
|
||||
"""
|
||||
simulator = FilterSimulator("""
|
||||
S4-DR0.5 > S4-PRY0.5 > S4-H0.5 > S4-Q0.5 > S4-DR2.5 > !4-0.5 > S4-G1.5 > S4-Q1
|
||||
> S4-DR5 > S4-DR8 > S4-G4 > S4-PRY2.5 > !4-1 > S4-Q2 > reset > S4-G2.5
|
||||
> S4-PRY5 > S4-PRY8 > !4-2 > !4-1.5 > S4-Q4 > !4-2.5 > !4-4 > S4-C6
|
||||
> S4-C8 > !4-6 > !4-8 > !4-12 > S4-C12
|
||||
""")
|
||||
simulator.run(sample_count=100000)
|
||||
# simulator = FilterSimulator("""
|
||||
# S4-DR0.5 > S4-PRY0.5 > S4-Q0.5 > S4-H0.5 > Q0.5 > S4-DR2.5
|
||||
# > S4-G1.5 > S4-Q1 > S4-DR5 > 0.5 > S4-G4 > S4-Q2 > S4-PRY2.5 > reset
|
||||
# > S4-DR8 > Q1 > 1 > S4-E-315 > S4-G2.5 > G1.5 > 1.5 > S4-E-031
|
||||
# > S4-Q4 > Q2 > E2 > 2 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S4-PRY5
|
||||
# > S4-PRY8 > Q4 > G4 > 4 > S4-C6 > DR5 > PRY5 > 5 > C6 > 6 > S4-C8
|
||||
# > S4-C12 > DR8 > PRY8 > C8 > 8 > C12 > 12
|
||||
# """)
|
||||
# simulator.run(sample_count=300000)
|
||||
"""
|
||||
优化一个过滤器,尝试调整过滤器选择的顺序,找到满足目标条件的消耗时间最短的排列方式
|
||||
类似于早期机器学习的实现,收敛过程中,向前尝试移动的距离变短,模拟样本量增大
|
||||
取消注释这些代码并运行,在8700k上需要约1-2天
|
||||
已给出一个包含所有选项、顺序大体正确的过滤器作为开始,不需要修改
|
||||
"""
|
||||
# optimizer = BruteForceOptimizer()
|
||||
# optimizer.optimize("""
|
||||
# S4-H0.5 > S4-DR0.5 > S4-PRY0.5 > S4-Q0.5 > !4-0.5 > S4-G1.5 > S4-Q1 > S4-DR2.5
|
||||
# > S4-G4 > S4-Q4 > S4-DR5 > S4-DR8 > S4-Q2 > S4-PRY2.5 > S4-G2.5 > !4-1
|
||||
# > reset > S4-PRY8 > !4-1.5 > S4-PRY5 > !4-2.5 > !4-2 > !4-4
|
||||
# > S4-C6 > !4-C8 > S4-C8 > !4-C6 > S4-C12 > !4-C12
|
||||
# """, diff=1)
|
||||
optimizer = BruteForceOptimizer()
|
||||
optimizer.optimize("""
|
||||
S4-H0.5 > S4-DR0.5 > S4-PRY0.5 > S4-Q0.5 > !4-0.5 > S4-G1.5 > S4-Q1 > S4-DR2.5
|
||||
> S4-G4 > S4-Q4 > S4-DR5 > S4-DR8 > S4-Q2 > S4-PRY2.5 > S4-G2.5 > !4-1
|
||||
> S4-H1 > S4-H2 > S4-H4
|
||||
> S4-EP2 > S4-EB2
|
||||
> reset > S4-PRY8 > !4-1.5 > S4-PRY5 > !4-2.5 > !4-2 > !4-4
|
||||
> S4-C6 > !4-C8 > S4-C8 > !4-C6 > S4-C12 > !4-C12
|
||||
""", diff=1)
|
||||
|
93
module/config/code_generator.py
Normal file
93
module/config/code_generator.py
Normal file
@ -0,0 +1,93 @@
|
||||
import typing as t
|
||||
|
||||
|
||||
class TabWrapper:
|
||||
def __init__(self, generator, prefix='', suffix=''):
|
||||
"""
|
||||
Args:
|
||||
generator (CodeGenerator):
|
||||
"""
|
||||
self.generator = generator
|
||||
self.prefix = prefix
|
||||
self.suffix = suffix
|
||||
|
||||
def __enter__(self):
|
||||
if self.prefix:
|
||||
self.generator.add(self.prefix)
|
||||
self.generator.tab_count += 1
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.generator.tab_count -= 1
|
||||
if self.suffix:
|
||||
self.generator.add(self.suffix)
|
||||
|
||||
|
||||
class CodeGenerator:
|
||||
def __init__(self):
|
||||
self.tab_count = 0
|
||||
self.lines = []
|
||||
|
||||
def generate(self) -> t.Iterable[str]:
|
||||
yield ''
|
||||
|
||||
def add(self, line, comment=False, newline=True):
|
||||
self.lines.append(self._line_with_tabs(line, comment=comment, newline=newline))
|
||||
|
||||
def print(self):
|
||||
lines = ''.join(self.lines)
|
||||
print(lines)
|
||||
|
||||
def write(self, file: str = None):
|
||||
lines = ''.join(self.lines)
|
||||
with open(file, 'w', encoding='utf-8', newline='') as f:
|
||||
f.write(lines)
|
||||
|
||||
def _line_with_tabs(self, line, comment=False, newline=True):
|
||||
if comment:
|
||||
line = '# ' + line
|
||||
out = ' ' * self.tab_count + line
|
||||
if newline:
|
||||
out += '\n'
|
||||
return out
|
||||
|
||||
def _repr(self, obj):
|
||||
if isinstance(obj, str) and '\n' in obj:
|
||||
out = '"""\n'
|
||||
with self.tab():
|
||||
for line in obj.strip().split('\n'):
|
||||
line = line.strip()
|
||||
out += self._line_with_tabs(line)
|
||||
out += self._line_with_tabs('"""', newline=False)
|
||||
return out
|
||||
return repr(obj)
|
||||
|
||||
def tab(self):
|
||||
return TabWrapper(self)
|
||||
|
||||
def Value(self, key=None, value=None, **kwargs):
|
||||
if key is not None:
|
||||
self.add(f'{key} = {self._repr(value)}')
|
||||
for key, value in kwargs.items():
|
||||
self.Value(key, value)
|
||||
|
||||
def Comment(self, text):
|
||||
for line in text.strip().split('\n'):
|
||||
line = line.strip()
|
||||
self.add(line, comment=True)
|
||||
|
||||
def Dict(self, key):
|
||||
return TabWrapper(self, prefix=str(key) + ' = {', suffix='}')
|
||||
|
||||
def DictItem(self, key=None, value=None, **kwargs):
|
||||
if key is not None:
|
||||
self.add(f'{self._repr(key)}: {self._repr(value)},')
|
||||
for key, value in kwargs.items():
|
||||
self.DictItem(key, value)
|
||||
|
||||
|
||||
generator = CodeGenerator()
|
||||
Value = generator.Value
|
||||
Comment = generator.Comment
|
||||
Dict = generator.Dict
|
||||
DictItem = generator.DictItem
|
@ -1,111 +1,276 @@
|
||||
FILTER_STRING_SHORTEST = '0.5 > 1 > 1.5 > 2 > 2.5 > 3 > 4 > 5 > 6 > 8 > 10 > 12'
|
||||
FILTER_STRING_CHEAPEST = 'Q1 > Q2 > T3 > T4 > Q4 > C6 > T6 > C8 > C12 > G1.5 > D2.5 > G2.5 > D5 > Q0.5 > G4 > D8 > H1 > H2 > H0.5 > D0.5 > H4'
|
||||
DICT_FILTER_PRESET = {
|
||||
'series_5_blueprint_152_cube': """
|
||||
S5-Q0.5 > S5-DR0.5 > S5-PRY0.5 > S5-H0.5 > S5-DR2.5 > 0.5 > S5-Q1
|
||||
> S5-H1 > S5-Q2 > reset > S5-Q4 > S5-G1.5 > Q1 > 1 > S5-H2 > S5-G4
|
||||
> 1.5 > S5-G2.5 > S5-PRY2.5 > 2.5 > S5-DR5 > Q2 > 2 > 3
|
||||
> S5-H4 > S5-DR8 > S5-PRY5 > Q4 > G4 > 4 > 5 > S5-PRY8
|
||||
> S5-C6 > C6 > 6 > S5-C8 > 8 > S5-C12 > 12""",
|
||||
'series_5_blueprint_152': """
|
||||
S5-DR0.5 > S5-PRY0.5 > S5-H0.5 > S5-Q0.5 > S5-DR2.5 > 0.5 > S5-G1.5
|
||||
> S5-Q1 > S5-DR5 > S5-DR8 > S5-G4 > S5-PRY2.5 > 1 > S5-Q2 > reset
|
||||
> S5-G2.5 > S5-PRY5 > S5-PRY8 > 1.5 > 2 > S5-Q4 > 2.5 > 3
|
||||
> Q4 > G4 > 4 > 5 > S5-C6 > C6 > 6 > S5-C8 > 8
|
||||
> S5-C12 > 12""",
|
||||
'series_5_blueprint_only_cube': """
|
||||
S5-DR0.5 > S5-H0.5 > S5-PRY0.5 > S5-H1 > S5-H2 > S5-DR2.5 > S5-Q0.5
|
||||
> 0.5 > S5-DR5 > reset > S5-DR8 > S5-H4 > S5-Q1 > Q1 > 1 > S5-G1.5
|
||||
> 1.5 > S5-Q2 > Q2 > 2 > S5-G2.5 > S5-PRY2.5 > 2.5 > 3
|
||||
> S5-Q4 > S5-G4 > Q4 > G4 > 4 > S5-PRY5 > 5 > S5-PRY8 > S5-C6
|
||||
> C6 > 6 > S5-C8 > 8 > S5-C12 > 12""",
|
||||
'series_5_blueprint_only': """
|
||||
S5-DR0.5 > S5-PRY0.5 > S5-H0.5 > S5-DR8 > S5-DR2.5 > S5-DR5 > S5-G1.5
|
||||
> S5-PRY2.5 > S5-Q0.5 > 0.5 > S5-G2.5 > S5-Q1 > 1 > reset > S5-G4
|
||||
> S5-PRY5 > 1.5 > S5-Q2 > 2 > S5-PRY8 > 2.5 > 3 > S5-Q4
|
||||
> Q4 > G4 > 4 > 5 > S5-C6 > C6 > 6 > S5-C8 > 8
|
||||
> S5-C12 > 12""",
|
||||
# Goal: DR_blurprint=0, PRY_blueprint=0, tanrai_blueprint=150
|
||||
# Average time cost: 153.41706666666678
|
||||
# Average rewards: [238.69016631 238.37881965 529.71190834 528.92520834 528.39586667 150.07973333]
|
||||
'series_5_152_only_cube': """
|
||||
S5-Q0.5 > S5-DR0.5 > S5-PRY0.5 > S5-Q1 > S5-Q4 > S5-Q2 > S5-H0.5 > 0.5
|
||||
> S5-G4 > S5-G1.5 > Q1 > S5-H1 > 1 > reset > S5-DR2.5 > S5-PRY2.5
|
||||
> S5-G2.5 > 1.5 > Q2 > S5-H2 > 2 > 2.5 > 3 > S5-DR5 > S5-PRY5
|
||||
> Q4 > G4 > S5-H4 > H4 > 4 > 5 > S5-DR8 > S5-PRY8 > S5-C6
|
||||
> C6 > S5-C8 > 8 > S5-C12 > 12""",
|
||||
S5-Q0.5 > S5-DR0.5 > S5-PRY0.5 > Q0.5 > S5-Q4 > S5-Q2 > S5-Q1 > 0.5
|
||||
> S5-E-315 > S5-G1.5 > S5-G4 > Q1 > reset > S5-H1 > H1 > 1 > S5-E-031
|
||||
> S5-DR2.5 > S5-PRY2.5 > S5-G2.5 > G1.5 > 1.5 > Q2 > E2 > S5-H2 > H2
|
||||
> 2 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S5-DR5 > S5-PRY5 > Q4 > G4
|
||||
> S5-H4 > H4 > 4 > S5-C6 > DR5 > PRY5 > 5 > S5-DR8 > S5-PRY8 > S5-C8
|
||||
> C6 > 6 > S5-C12 > DR8 > PRY8 > C8 > 8 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=0, PRY_blueprint=0, tanrai_blueprint=150
|
||||
# Average time cost: 161.37177965277806
|
||||
# Average rewards: [241.92774575 241.13046242 421.82134358 421.04494941 420.46893024 150.07799978]
|
||||
'series_5_152_only': """
|
||||
S5-Q0.5 > S5-DR0.5 > S5-PRY0.5 > S5-Q4 > S5-Q1 > S5-Q2 > S5-H0.5 > 0.5
|
||||
> S5-G4 > S5-G1.5 > Q1 > 1 > S5-DR2.5 > S5-PRY2.5 > reset > S5-G2.5 > 1.5
|
||||
> Q2 > 2 > 2.5 > 3 > S5-DR5 > S5-PRY5 > Q4 > G4
|
||||
> 4 > 5 > S5-C6 > S5-DR8 > S5-PRY8 > S5-C8 > C6 > 6 > 8
|
||||
> S5-C12 > 12""",
|
||||
'series_4_blueprint_tenrai_cube': """
|
||||
S4-Q0.5 > S4-DR0.5 > S4-PRY0.5 > S4-H0.5 > S4-DR2.5 > 0.5 > S4-Q1
|
||||
> S4-H1 > S4-Q2 > reset > S4-Q4 > S4-G1.5 > Q1 > 1 > S4-H2 > S4-G4
|
||||
> 1.5 > S4-G2.5 > S4-PRY2.5 > 2.5 > S4-DR5 > Q2 > 2 > 3
|
||||
> S4-H4 > S4-DR8 > S4-PRY5 > Q4 > G4 > 4 > 5 > S4-PRY8
|
||||
> S4-C6 > C6 > 6 > S4-C8 > 8 > S4-C12 > 12""",
|
||||
'series_4_blueprint_tenrai': """
|
||||
S4-DR0.5 > S4-PRY0.5 > S4-H0.5 > S4-Q0.5 > S4-DR2.5 > 0.5 > S4-G1.5
|
||||
> S4-Q1 > S4-DR5 > S4-DR8 > S4-G4 > S4-PRY2.5 > 1 > S4-Q2 > reset
|
||||
> S4-G2.5 > S4-PRY5 > S4-PRY8 > 1.5 > 2 > S4-Q4 > 2.5 > 3
|
||||
> Q4 > G4 > 4 > 5 > S4-C6 > C6 > 6 > S4-C8 > 8
|
||||
> S4-C12 > 12""",
|
||||
'series_4_blueprint_only_cube': """
|
||||
S4-DR0.5 > S4-H0.5 > S4-PRY0.5 > S4-H1 > S4-H2 > S4-DR2.5 > S4-Q0.5
|
||||
> 0.5 > S4-DR5 > reset > S4-DR8 > S4-H4 > S4-Q1 > Q1 > 1 > S4-G1.5
|
||||
> 1.5 > S4-Q2 > Q2 > 2 > S4-G2.5 > S4-PRY2.5 > 2.5 > 3
|
||||
> S4-Q4 > S4-G4 > Q4 > G4 > 4 > S4-PRY5 > 5 > S4-PRY8 > S4-C6
|
||||
> C6 > 6 > S4-C8 > 8 > S4-C12 > 12""",
|
||||
'series_4_blueprint_only': """
|
||||
S4-DR0.5 > S4-PRY0.5 > S4-H0.5 > S4-DR8 > S4-DR2.5 > S4-DR5 > S4-G1.5
|
||||
> S4-PRY2.5 > S4-Q0.5 > 0.5 > S4-G2.5 > S4-Q1 > 1 > reset > S4-G4
|
||||
> S4-PRY5 > 1.5 > S4-Q2 > 2 > S4-PRY8 > 2.5 > 3 > S4-Q4
|
||||
> Q4 > G4 > 4 > 5 > S4-C6 > C6 > 6 > S4-C8 > 8
|
||||
> S4-C12 > 12""",
|
||||
S5-Q0.5 > S5-PRY0.5 > S5-DR0.5 > Q0.5 > S5-Q4 > S5-Q2 > S5-Q1 > 0.5
|
||||
> S5-E-315 > S5-G4 > S5-G1.5 > Q1 > 1 > S5-E-031 > S5-DR2.5 > reset
|
||||
> S5-G2.5 > S5-PRY2.5 > G1.5 > 1.5 > Q2 > E2 > 2 > DR2.5 > PRY2.5
|
||||
> G2.5 > 2.5 > S5-DR5 > S5-PRY5 > Q4 > G4 > 4 > S5-C6 > DR5 > PRY5
|
||||
> 5 > S5-DR8 > S5-PRY8 > S5-C8 > C6 > 6 > DR8 > PRY8 > C8 > 8
|
||||
> S5-C12 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=100
|
||||
# Average time cost: 124.67622465277958
|
||||
# Average rewards: [531.93022864 529.81919864 510.27473326 510.18530159 510.11215826 100.8088164]
|
||||
'series_5_blueprint_152_cube': """
|
||||
S5-DR0.5 > S5-Q0.5 > S5-PRY0.5 > 0.5 > S5-DR2.5 > S5-Q1 > S5-Q2
|
||||
> S5-H1 > S5-E-315 > S5-G1.5 > reset > S5-Q4 > S5-G4 > S5-H2 > Q1
|
||||
> H1 > 1 > S5-G2.5 > S5-DR5 > S5-PRY2.5 > G1.5 > 1.5 > S5-E-031
|
||||
> S5-DR8 > Q2 > E2 > H2 > 2 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S5-H4
|
||||
> S5-PRY5 > Q4 > G4 > H4 > 4 > S5-C6 > S5-PRY8 > DR5 > PRY5 > 5 > C6
|
||||
> 6 > S5-C8 > DR8 > PRY8 > C8 > 8 > S5-C12 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=100
|
||||
# Average time cost: 143.56399131945145
|
||||
# Average rewards: [520.06195858 519.19883191 392.86544828 392.64870495 392.49383995 102.2368499]
|
||||
'series_5_blueprint_152': """
|
||||
S5-DR0.5 > S5-PRY0.5 > S5-Q0.5 > S5-H0.5 > Q0.5 > S5-DR2.5
|
||||
> S5-G1.5 > S5-Q1 > S5-DR5 > 0.5 > S5-G4 > S5-Q2 > S5-PRY2.5 > reset
|
||||
> S5-DR8 > Q1 > 1 > S5-E-315 > S5-G2.5 > G1.5 > 1.5 > S5-E-031
|
||||
> S5-Q4 > Q2 > E2 > 2 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S5-PRY5
|
||||
> S5-PRY8 > Q4 > G4 > 4 > S5-C6 > DR5 > PRY5 > 5 > C6 > 6 > S5-C8
|
||||
> S5-C12 > DR8 > PRY8 > C8 > 8 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=0
|
||||
# Average time cost: 82.0121088194467
|
||||
# Average rewards: [519.0311752 514.64003687 653.77171198 653.72126532 653.66129615 26.97694791]
|
||||
'series_5_blueprint_only_cube': """
|
||||
S5-DR0.5 > S5-PRY0.5 > S5-H0.5 > S5-H1 > S5-H2 > S5-DR2.5 > S5-DR5
|
||||
> 0.5 > S5-DR8 > reset > S5-H4 > S5-Q1 > Q1 > H1 > 1 > S5-G1.5 > G1.5
|
||||
> 1.5 > S5-G2.5 > S5-Q2 > S5-E-315 > S5-E-031 > Q2 > E2 > H2 > 2
|
||||
> S5-PRY2.5 > S5-G4 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S5-Q4 > Q4 > G4
|
||||
> H4 > 4 > S5-PRY5 > S5-PRY8 > S5-C6 > DR5 > PRY5 > 5 > C6 > 6
|
||||
> S5-C8 > S5-C12 > DR8 > PRY8 > C8 > 8 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=0
|
||||
# Average time cost: 124.71616166666873
|
||||
# Average rewards: [514.96354877 514.70099977 355.58865468 354.96831385 354.66888635 56.48432238]
|
||||
'series_5_blueprint_only': """
|
||||
S5-DR0.5 > S5-H0.5 > S5-PRY0.5 > S5-DR8 > S5-DR5 > S5-DR2.5
|
||||
> S5-G1.5 > S5-PRY2.5 > 0.5 > S5-G2.5 > S5-G4 > reset > S5-Q1 > Q1
|
||||
> 1 > S5-PRY5 > G1.5 > 1.5 > S5-Q2 > S5-E-031 > S5-E-315 > Q2 > E2
|
||||
> 2 > S5-PRY8 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S5-Q4 > Q4 > G4 > 4
|
||||
> S5-C6 > DR5 > PRY5 > 5 > C6 > 6 > S5-C8 > DR8 > PRY8 > C8 > 8
|
||||
> S5-C12 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=0, PRY_blueprint=0, tanrai_blueprint=150
|
||||
# Average time cost: 153.41706666666678
|
||||
# Average rewards: [238.69016631 238.37881965 529.71190834 528.92520834 528.39586667 150.07973333]
|
||||
'series_4_tenrai_only_cube': """
|
||||
S4-Q0.5 > S4-DR0.5 > S4-PRY0.5 > S4-Q1 > S4-Q4 > S4-Q2 > S4-H0.5 > 0.5
|
||||
> S4-G4 > S4-G1.5 > Q1 > S4-H1 > 1 > reset > S4-DR2.5 > S4-PRY2.5
|
||||
> S4-G2.5 > 1.5 > Q2 > S4-H2 > 2 > 2.5 > 3 > S4-DR5 > S4-PRY5
|
||||
> Q4 > G4 > S4-H4 > H4 > 4 > 5 > S4-DR8 > S4-PRY8 > S4-C6
|
||||
> C6 > S4-C8 > 8 > S4-C12 > 12""",
|
||||
S4-Q0.5 > S4-DR0.5 > S4-PRY0.5 > Q0.5 > S4-Q4 > S4-Q2 > S4-Q1 > 0.5
|
||||
> S4-E-315 > S4-G1.5 > S4-G4 > Q1 > reset > S4-H1 > H1 > 1 > S4-E-031
|
||||
> S4-DR2.5 > S4-PRY2.5 > S4-G2.5 > G1.5 > 1.5 > Q2 > E2 > S4-H2 > H2
|
||||
> 2 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S4-DR5 > S4-PRY5 > Q4 > G4
|
||||
> S4-H4 > H4 > 4 > S4-C6 > DR5 > PRY5 > 5 > S4-DR8 > S4-PRY8 > S4-C8
|
||||
> C6 > 6 > S4-C12 > DR8 > PRY8 > C8 > 8 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=0, PRY_blueprint=0, tanrai_blueprint=150
|
||||
# Average time cost: 161.37177965277806
|
||||
# Average rewards: [241.92774575 241.13046242 421.82134358 421.04494941 420.46893024 150.07799978]
|
||||
'series_4_tenrai_only': """
|
||||
S4-Q0.5 > S4-DR0.5 > S4-PRY0.5 > S4-Q4 > S4-Q1 > S4-Q2 > S4-H0.5 > 0.5
|
||||
> S4-G4 > S4-G1.5 > Q1 > 1 > S4-DR2.5 > S4-PRY2.5 > reset > S4-G2.5 > 1.5
|
||||
> Q2 > 2 > 2.5 > 3 > S4-DR5 > S4-PRY5 > Q4 > G4
|
||||
> 4 > 5 > S4-C6 > S4-DR8 > S4-PRY8 > S4-C8 > C6 > 6 > 8
|
||||
> S4-C12 > 12""",
|
||||
'series_2_than_3_457_234': """
|
||||
S2-Q0.5 > S2-PRY0.5 > S2-DR0.5 > S2-Q4 > S2-Q1 > S2-Q2 > S2-H0.5 > 0.5
|
||||
> S3-Q1 > S3-Q2 > S2-G4 > S3-Q4 > S2-G1.5 > S2-DR2.5 > reset > Q1 > S2-PRY2.5 > S2-G2.5 > H1 > 1.5
|
||||
> Q2 > 2.5 > S2-DR5 > S2-PRY5 > Q4 > G4 > 5 > H2 > S2-C6 > S2-DR8 > S2-PRY8 > S2-C8
|
||||
> 6 > 8 > 4 > S2-C12 > 12""",
|
||||
S4-Q0.5 > S4-PRY0.5 > S4-DR0.5 > Q0.5 > S4-Q4 > S4-Q2 > S4-Q1 > 0.5
|
||||
> S4-E-315 > S4-G4 > S4-G1.5 > Q1 > 1 > S4-E-031 > S4-DR2.5 > reset
|
||||
> S4-G2.5 > S4-PRY2.5 > G1.5 > 1.5 > Q2 > E2 > 2 > DR2.5 > PRY2.5
|
||||
> G2.5 > 2.5 > S4-DR5 > S4-PRY5 > Q4 > G4 > 4 > S4-C6 > DR5 > PRY5
|
||||
> 5 > S4-DR8 > S4-PRY8 > S4-C8 > C6 > 6 > DR8 > PRY8 > C8 > 8
|
||||
> S4-C12 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=100
|
||||
# Average time cost: 124.67622465277958
|
||||
# Average rewards: [531.93022864 529.81919864 510.27473326 510.18530159 510.11215826 100.8088164]
|
||||
'series_4_blueprint_tenrai_cube': """
|
||||
S4-DR0.5 > S4-Q0.5 > S4-PRY0.5 > 0.5 > S4-DR2.5 > S4-Q1 > S4-Q2
|
||||
> S4-H1 > S4-E-315 > S4-G1.5 > reset > S4-Q4 > S4-G4 > S4-H2 > Q1
|
||||
> H1 > 1 > S4-G2.5 > S4-DR5 > S4-PRY2.5 > G1.5 > 1.5 > S4-E-031
|
||||
> S4-DR8 > Q2 > E2 > H2 > 2 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S4-H4
|
||||
> S4-PRY5 > Q4 > G4 > H4 > 4 > S4-C6 > S4-PRY8 > DR5 > PRY5 > 5 > C6
|
||||
> 6 > S4-C8 > DR8 > PRY8 > C8 > 8 > S4-C12 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=100
|
||||
# Average time cost: 143.56399131945145
|
||||
# Average rewards: [520.06195858 519.19883191 392.86544828 392.64870495 392.49383995 102.2368499]
|
||||
'series_4_blueprint_tenrai': """
|
||||
S4-DR0.5 > S4-PRY0.5 > S4-Q0.5 > S4-H0.5 > Q0.5 > S4-DR2.5
|
||||
> S4-G1.5 > S4-Q1 > S4-DR5 > 0.5 > S4-G4 > S4-Q2 > S4-PRY2.5 > reset
|
||||
> S4-DR8 > Q1 > 1 > S4-E-315 > S4-G2.5 > G1.5 > 1.5 > S4-E-031
|
||||
> S4-Q4 > Q2 > E2 > 2 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S4-PRY5
|
||||
> S4-PRY8 > Q4 > G4 > 4 > S4-C6 > DR5 > PRY5 > 5 > C6 > 6 > S4-C8
|
||||
> S4-C12 > DR8 > PRY8 > C8 > 8 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=0
|
||||
# Average time cost: 82.0121088194467
|
||||
# Average rewards: [519.0311752 514.64003687 653.77171198 653.72126532 653.66129615 26.97694791]
|
||||
'series_4_blueprint_only_cube': """
|
||||
S4-DR0.5 > S4-PRY0.5 > S4-H0.5 > S4-H1 > S4-H2 > S4-DR2.5 > S4-DR5
|
||||
> 0.5 > S4-DR8 > reset > S4-H4 > S4-Q1 > Q1 > H1 > 1 > S4-G1.5 > G1.5
|
||||
> 1.5 > S4-G2.5 > S4-Q2 > S4-E-315 > S4-E-031 > Q2 > E2 > H2 > 2
|
||||
> S4-PRY2.5 > S4-G4 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S4-Q4 > Q4 > G4
|
||||
> H4 > 4 > S4-PRY5 > S4-PRY8 > S4-C6 > DR5 > PRY5 > 5 > C6 > 6
|
||||
> S4-C8 > S4-C12 > DR8 > PRY8 > C8 > 8 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=0
|
||||
# Average time cost: 124.71616166666873
|
||||
# Average rewards: [514.96354877 514.70099977 355.58865468 354.96831385 354.66888635 56.48432238]
|
||||
'series_4_blueprint_only': """
|
||||
S4-DR0.5 > S4-H0.5 > S4-PRY0.5 > S4-DR8 > S4-DR5 > S4-DR2.5
|
||||
> S4-G1.5 > S4-PRY2.5 > 0.5 > S4-G2.5 > S4-G4 > reset > S4-Q1 > Q1
|
||||
> 1 > S4-PRY5 > G1.5 > 1.5 > S4-Q2 > S4-E-031 > S4-E-315 > Q2 > E2
|
||||
> 2 > S4-PRY8 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S4-Q4 > Q4 > G4 > 4
|
||||
> S4-C6 > DR5 > PRY5 > 5 > C6 > 6 > S4-C8 > DR8 > PRY8 > C8 > 8
|
||||
> S4-C12 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=0, PRY_blueprint=0, tanrai_blueprint=150
|
||||
# Average time cost: 153.41706666666678
|
||||
# Average rewards: [238.69016631 238.37881965 529.71190834 528.92520834 528.39586667 150.07973333]
|
||||
'series_3_234_only_cube': """
|
||||
S3-Q0.5 > S3-DR0.5 > S3-PRY0.5 > Q0.5 > S3-Q4 > S3-Q2 > S3-Q1 > 0.5
|
||||
> S3-E-315 > S3-G1.5 > S3-G4 > Q1 > reset > S3-H1 > H1 > 1 > S3-E-031
|
||||
> S3-DR2.5 > S3-PRY2.5 > S3-G2.5 > G1.5 > 1.5 > Q2 > E2 > S3-H2 > H2
|
||||
> 2 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S3-DR5 > S3-PRY5 > Q4 > G4
|
||||
> S3-H4 > H4 > 4 > S3-C6 > DR5 > PRY5 > 5 > S3-DR8 > S3-PRY8 > S3-C8
|
||||
> C6 > 6 > S3-C12 > DR8 > PRY8 > C8 > 8 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=0, PRY_blueprint=0, tanrai_blueprint=150
|
||||
# Average time cost: 161.37177965277806
|
||||
# Average rewards: [241.92774575 241.13046242 421.82134358 421.04494941 420.46893024 150.07799978]
|
||||
'series_3_234_only': """
|
||||
S2-Q0.5 > S2-PRY0.5 > S2-DR0.5 > S3-Q4 > S3-Q1 > S3-Q2 > S2-H0.5 > 0.5
|
||||
> S3-G4 > S3-G1.5 > S3-DR2.5 > reset > Q1 > S3-PRY2.5 > S3-G2.5 > H1 > 1.5
|
||||
> Q2 > 2.5 > S3-DR5 > S3-PRY5 > Q4 > G4 > 5 > H2 > S2-C6 > S3-DR8 > S3-PRY8 > S3-C8
|
||||
> 6 > 8 > 4 > S3-C12 > 12""",
|
||||
S3-Q0.5 > S3-PRY0.5 > S3-DR0.5 > Q0.5 > S3-Q4 > S3-Q2 > S3-Q1 > 0.5
|
||||
> S3-E-315 > S3-G4 > S3-G1.5 > Q1 > 1 > S3-E-031 > S3-DR2.5 > reset
|
||||
> S3-G2.5 > S3-PRY2.5 > G1.5 > 1.5 > Q2 > E2 > 2 > DR2.5 > PRY2.5
|
||||
> G2.5 > 2.5 > S3-DR5 > S3-PRY5 > Q4 > G4 > 4 > S3-C6 > DR5 > PRY5
|
||||
> 5 > S3-DR8 > S3-PRY8 > S3-C8 > C6 > 6 > DR8 > PRY8 > C8 > 8
|
||||
> S3-C12 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=100
|
||||
# Average time cost: 124.67622465277958
|
||||
# Average rewards: [531.93022864 529.81919864 510.27473326 510.18530159 510.11215826 100.8088164]
|
||||
'series_3_blueprint_234_cube': """
|
||||
S3-DR0.5 > S3-Q0.5 > S3-PRY0.5 > 0.5 > S3-DR2.5 > S3-Q1 > S3-Q2
|
||||
> S3-H1 > S3-E-315 > S3-G1.5 > reset > S3-Q4 > S3-G4 > S3-H2 > Q1
|
||||
> H1 > 1 > S3-G2.5 > S3-DR5 > S3-PRY2.5 > G1.5 > 1.5 > S3-E-031
|
||||
> S3-DR8 > Q2 > E2 > H2 > 2 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S3-H4
|
||||
> S3-PRY5 > Q4 > G4 > H4 > 4 > S3-C6 > S3-PRY8 > DR5 > PRY5 > 5 > C6
|
||||
> 6 > S3-C8 > DR8 > PRY8 > C8 > 8 > S3-C12 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=100
|
||||
# Average time cost: 143.56399131945145
|
||||
# Average rewards: [520.06195858 519.19883191 392.86544828 392.64870495 392.49383995 102.2368499]
|
||||
'series_3_blueprint_234': """
|
||||
S3-Q0.5 > S3-DR0.5 > S3-PRY0.5 > S3-H0.5 > S3-DR2.5 > 0.5 > S3-G1.5
|
||||
> S3-Q1 > S3-G4 > S3-DR5 > S3-DR8 > S3-PRY2.5 > 1 > S3-Q2 > reset
|
||||
> S3-G2.5 > S3-PRY5 > S3-PRY8 > 1.5 > 2 > S3-Q4 > 2.5 > 4 > 5 > S3-C6
|
||||
> S3-C8 > 6 > 8 > S3-C12 > 12""",
|
||||
'series_2_blueprint_457': """
|
||||
S2-Q0.5 > S2-DR0.5 > S2-PRY0.5 > S2-H0.5 > S2-DR2.5 > 0.5 > S2-G1.5
|
||||
> S2-Q1 > S2-G4 > S2-DR5 > S2-DR8 > S2-PRY2.5 > 1 > S2-Q2 > reset
|
||||
> S2-G2.5 > S2-PRY5 > S2-PRY8 > 1.5 > 2 > S2-Q4 > 2.5 > 4 > 5 > S2-C6
|
||||
> S2-C8 > 6 > 8 > S2-C12 > 12""",
|
||||
S3-DR0.5 > S3-PRY0.5 > S3-Q0.5 > S3-H0.5 > Q0.5 > S3-DR2.5
|
||||
> S3-G1.5 > S3-Q1 > S3-DR5 > 0.5 > S3-G4 > S3-Q2 > S3-PRY2.5 > reset
|
||||
> S3-DR8 > Q1 > 1 > S3-E-315 > S3-G2.5 > G1.5 > 1.5 > S3-E-031
|
||||
> S3-Q4 > Q2 > E2 > 2 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S3-PRY5
|
||||
> S3-PRY8 > Q4 > G4 > 4 > S3-C6 > DR5 > PRY5 > 5 > C6 > 6 > S3-C8
|
||||
> S3-C12 > DR8 > PRY8 > C8 > 8 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=0
|
||||
# Average time cost: 82.0121088194467
|
||||
# Average rewards: [519.0311752 514.64003687 653.77171198 653.72126532 653.66129615 26.97694791]
|
||||
'series_3_blueprint_only_cube': """
|
||||
S3-DR0.5 > S3-PRY0.5 > S3-H0.5 > S3-H1 > S3-H2 > S3-DR2.5 > S3-DR5
|
||||
> 0.5 > S3-DR8 > reset > S3-H4 > S3-Q1 > Q1 > H1 > 1 > S3-G1.5 > G1.5
|
||||
> 1.5 > S3-G2.5 > S3-Q2 > S3-E-315 > S3-E-031 > Q2 > E2 > H2 > 2
|
||||
> S3-PRY2.5 > S3-G4 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S3-Q4 > Q4 > G4
|
||||
> H4 > 4 > S3-PRY5 > S3-PRY8 > S3-C6 > DR5 > PRY5 > 5 > C6 > 6
|
||||
> S3-C8 > S3-C12 > DR8 > PRY8 > C8 > 8 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=0
|
||||
# Average time cost: 124.71616166666873
|
||||
# Average rewards: [514.96354877 514.70099977 355.58865468 354.96831385 354.66888635 56.48432238]
|
||||
'series_3_blueprint_only': """
|
||||
S3-DR0.5 > S3-PRY0.5 > S3-H0.5 > S3-Q0.5 > S3-DR2.5 > S3-G4 > S3-G1.5
|
||||
> S3-PRY2.5 > 0.5 > S3-G2.5 > S3-Q1 > 1 > reset > S3-DR5 > S3-DR8
|
||||
> S3-PRY5 > 1.5 > S3-Q2 > 2 > S3-PRY8 > 2.5 > S3-Q4 > 4 > 5 > S3-C6
|
||||
> 6 > S3-C8 > 8 > S3-C12 > 12""",
|
||||
'series_2_blueprint_only': """
|
||||
S2-DR0.5 > S2-PRY0.5 > S2-H0.5 > S2-Q0.5 > S2-DR2.5 > S2-G4 > S2-G1.5
|
||||
> S2-PRY2.5 > 0.5 > S2-G2.5 > S2-Q1 > 1 > reset > S2-DR5 > S2-DR8
|
||||
> S2-PRY5 > 1.5 > S2-Q2 > 2 > S2-PRY8 > 2.5 > S2-Q4 > 4 > 5 > S2-C6
|
||||
> 6 > S2-C8 > 8 > S2-C12 > 12""",
|
||||
S3-DR0.5 > S3-H0.5 > S3-PRY0.5 > S3-DR8 > S3-DR5 > S3-DR2.5
|
||||
> S3-G1.5 > S3-PRY2.5 > 0.5 > S3-G2.5 > S3-G4 > reset > S3-Q1 > Q1
|
||||
> 1 > S3-PRY5 > G1.5 > 1.5 > S3-Q2 > S3-E-031 > S3-E-315 > Q2 > E2
|
||||
> 2 > S3-PRY8 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S3-Q4 > Q4 > G4 > 4
|
||||
> S3-C6 > DR5 > PRY5 > 5 > C6 > 6 > S3-C8 > DR8 > PRY8 > C8 > 8
|
||||
> S3-C12 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=0, PRY_blueprint=0, tanrai_blueprint=150
|
||||
# Average time cost: 153.41706666666678
|
||||
# Average rewards: [238.69016631 238.37881965 529.71190834 528.92520834 528.39586667 150.07973333]
|
||||
'series_2_457_only_cube': """
|
||||
S2-Q0.5 > S2-DR0.5 > S2-PRY0.5 > Q0.5 > S2-Q4 > S2-Q2 > S2-Q1 > 0.5
|
||||
> S2-E-315 > S2-G1.5 > S2-G4 > Q1 > reset > S2-H1 > H1 > 1 > S2-E-031
|
||||
> S2-DR2.5 > S2-PRY2.5 > S2-G2.5 > G1.5 > 1.5 > Q2 > E2 > S2-H2 > H2
|
||||
> 2 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S2-DR5 > S2-PRY5 > Q4 > G4
|
||||
> S2-H4 > H4 > 4 > S2-C6 > DR5 > PRY5 > 5 > S2-DR8 > S2-PRY8 > S2-C8
|
||||
> C6 > 6 > S2-C12 > DR8 > PRY8 > C8 > 8 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=0, PRY_blueprint=0, tanrai_blueprint=150
|
||||
# Average time cost: 161.37177965277806
|
||||
# Average rewards: [241.92774575 241.13046242 421.82134358 421.04494941 420.46893024 150.07799978]
|
||||
'series_2_457_only': """
|
||||
S2-Q0.5 > S2-PRY0.5 > S2-DR0.5 > S2-Q4 > S2-Q1 > S2-Q2 > S2-H0.5 > 0.5
|
||||
> Q1 > S2-G4 > S2-G1.5 > S2-DR2.5 > reset > S2-PRY2.5 > S2-G2.5 > H1 > 1.5
|
||||
> Q2 > 2.5 > S2-DR5 > S2-PRY5 > Q4 > G4 > 5 > H2 > S2-C6 > S2-DR8 > S2-PRY8 > S2-C8
|
||||
> 6 > 8 > 4 > S2-C12 > 12"""
|
||||
S2-Q0.5 > S2-PRY0.5 > S2-DR0.5 > Q0.5 > S2-Q4 > S2-Q2 > S2-Q1 > 0.5
|
||||
> S2-E-315 > S2-G4 > S2-G1.5 > Q1 > 1 > S2-E-031 > S2-DR2.5 > reset
|
||||
> S2-G2.5 > S2-PRY2.5 > G1.5 > 1.5 > Q2 > E2 > 2 > DR2.5 > PRY2.5
|
||||
> G2.5 > 2.5 > S2-DR5 > S2-PRY5 > Q4 > G4 > 4 > S2-C6 > DR5 > PRY5
|
||||
> 5 > S2-DR8 > S2-PRY8 > S2-C8 > C6 > 6 > DR8 > PRY8 > C8 > 8
|
||||
> S2-C12 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=100
|
||||
# Average time cost: 124.67622465277958
|
||||
# Average rewards: [531.93022864 529.81919864 510.27473326 510.18530159 510.11215826 100.8088164]
|
||||
'series_2_blueprint_457_cube': """
|
||||
S2-DR0.5 > S2-Q0.5 > S2-PRY0.5 > 0.5 > S2-DR2.5 > S2-Q1 > S2-Q2
|
||||
> S2-H1 > S2-E-315 > S2-G1.5 > reset > S2-Q4 > S2-G4 > S2-H2 > Q1
|
||||
> H1 > 1 > S2-G2.5 > S2-DR5 > S2-PRY2.5 > G1.5 > 1.5 > S2-E-031
|
||||
> S2-DR8 > Q2 > E2 > H2 > 2 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S2-H4
|
||||
> S2-PRY5 > Q4 > G4 > H4 > 4 > S2-C6 > S2-PRY8 > DR5 > PRY5 > 5 > C6
|
||||
> 6 > S2-C8 > DR8 > PRY8 > C8 > 8 > S2-C12 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=100
|
||||
# Average time cost: 143.56399131945145
|
||||
# Average rewards: [520.06195858 519.19883191 392.86544828 392.64870495 392.49383995 102.2368499]
|
||||
'series_2_blueprint_457': """
|
||||
S2-DR0.5 > S2-PRY0.5 > S2-Q0.5 > S2-H0.5 > Q0.5 > S2-DR2.5
|
||||
> S2-G1.5 > S2-Q1 > S2-DR5 > 0.5 > S2-G4 > S2-Q2 > S2-PRY2.5 > reset
|
||||
> S2-DR8 > Q1 > 1 > S2-E-315 > S2-G2.5 > G1.5 > 1.5 > S2-E-031
|
||||
> S2-Q4 > Q2 > E2 > 2 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S2-PRY5
|
||||
> S2-PRY8 > Q4 > G4 > 4 > S2-C6 > DR5 > PRY5 > 5 > C6 > 6 > S2-C8
|
||||
> S2-C12 > DR8 > PRY8 > C8 > 8 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=0
|
||||
# Average time cost: 82.0121088194467
|
||||
# Average rewards: [519.0311752 514.64003687 653.77171198 653.72126532 653.66129615 26.97694791]
|
||||
'series_2_blueprint_only_cube': """
|
||||
S2-DR0.5 > S2-PRY0.5 > S2-H0.5 > S2-H1 > S2-H2 > S2-DR2.5 > S2-DR5
|
||||
> 0.5 > S2-DR8 > reset > S2-H4 > S2-Q1 > Q1 > H1 > 1 > S2-G1.5 > G1.5
|
||||
> 1.5 > S2-G2.5 > S2-Q2 > S2-E-315 > S2-E-031 > Q2 > E2 > H2 > 2
|
||||
> S2-PRY2.5 > S2-G4 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S2-Q4 > Q4 > G4
|
||||
> H4 > 4 > S2-PRY5 > S2-PRY8 > S2-C6 > DR5 > PRY5 > 5 > C6 > 6
|
||||
> S2-C8 > S2-C12 > DR8 > PRY8 > C8 > 8 > C12 > 12
|
||||
""",
|
||||
# Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=0
|
||||
# Average time cost: 124.71616166666873
|
||||
# Average rewards: [514.96354877 514.70099977 355.58865468 354.96831385 354.66888635 56.48432238]
|
||||
'series_2_blueprint_only': """
|
||||
S2-DR0.5 > S2-H0.5 > S2-PRY0.5 > S2-DR8 > S2-DR5 > S2-DR2.5
|
||||
> S2-G1.5 > S2-PRY2.5 > 0.5 > S2-G2.5 > S2-G4 > reset > S2-Q1 > Q1
|
||||
> 1 > S2-PRY5 > G1.5 > 1.5 > S2-Q2 > S2-E-031 > S2-E-315 > Q2 > E2
|
||||
> 2 > S2-PRY8 > DR2.5 > PRY2.5 > G2.5 > 2.5 > S2-Q4 > Q4 > G4 > 4
|
||||
> S2-C6 > DR5 > PRY5 > 5 > C6 > 6 > S2-C8 > DR8 > PRY8 > C8 > 8
|
||||
> S2-C12 > C12 > 12
|
||||
""",
|
||||
# Old community filters
|
||||
'series_2_than_3_457_234': """
|
||||
S2-Q0.5 > S2-PRY0.5 > S2-DR0.5 > S2-Q4 > S2-Q1 > S2-Q2 > S2-H0.5
|
||||
> 0.5 > S3-Q1 > S3-Q2 > S2-G4 > S3-Q4 > S2-G1.5 > S2-DR2.5 > reset
|
||||
> Q1 > S2-PRY2.5 > S2-G2.5 > H1 > 1.5 > Q2 > 2.5 > S2-DR5 > S2-PRY5
|
||||
> Q4 > G4 > 5 > H2 > S2-C6 > S2-DR8 > S2-PRY8 > S2-C8 > 6 > 8 > 4
|
||||
> S2-C12 > 12
|
||||
""",
|
||||
}
|
||||
|
195
module/research/preset_generator.py
Normal file
195
module/research/preset_generator.py
Normal file
@ -0,0 +1,195 @@
|
||||
import re
|
||||
|
||||
|
||||
def split_filter(string):
|
||||
if isinstance(string, list):
|
||||
return string
|
||||
return [f.strip(' \t\r\n') for f in string.split('>')]
|
||||
|
||||
|
||||
def join_filter(selection):
|
||||
if isinstance(selection, str):
|
||||
return selection
|
||||
return ' > '.join(selection)
|
||||
|
||||
|
||||
def beautify_filter(list_filter):
|
||||
if isinstance(list_filter, str):
|
||||
list_filter = split_filter(list_filter)
|
||||
|
||||
out = []
|
||||
length = 0
|
||||
for selection in list_filter:
|
||||
if length + len(selection) + 3 > 70:
|
||||
out.append('\n')
|
||||
length = 0
|
||||
out.append(selection)
|
||||
length += len(selection) + 3
|
||||
string = ' > '.join(out).strip('\n >').replace(' > \n', '\n').replace('\n ', '\n')
|
||||
return string
|
||||
|
||||
|
||||
def translate(string: str, target='series_4_tenrai_only_cube', for_simulate=False):
|
||||
res = re.search(r'series_?(\d)', target)
|
||||
if res:
|
||||
series = res.group(1)
|
||||
else:
|
||||
print(f'Translate target from unknown series: {target}')
|
||||
return
|
||||
cube = 'cube' in target
|
||||
string = string.replace('S4-H0.5 > !4-0.5', '0.5')
|
||||
string = string.replace('!4-0.5', '0.5')
|
||||
# Add Q0.5 after the last 0.5 selection
|
||||
selections = split_filter(string)
|
||||
last_05 = 0
|
||||
for index, sele in enumerate(selections):
|
||||
if sele == '0.5':
|
||||
break
|
||||
if '0.5' in sele:
|
||||
last_05 = index
|
||||
if last_05:
|
||||
selections.insert(last_05 + 1, 'Q0.5')
|
||||
string = join_filter(selections)
|
||||
string = string.replace('S4-Q0.5 > Q0.5 > 0.5', '0.5')
|
||||
string = string.replace('Q0.5 > 0.5', '0.5')
|
||||
|
||||
string = string.replace('!4-1.5', 'G1.5 > 1.5')
|
||||
string = string.replace('!4-1', 'Q1 > H1 > 1')
|
||||
string = string.replace('!4-2.5', 'DR2.5 > PRY2.5 > G2.5 > 2.5')
|
||||
string = string.replace('!4-2', 'Q2 > E2 > H2 > 2')
|
||||
string = string.replace('!4-4', 'Q4 > G4 > H4 > 4')
|
||||
string = string.replace('!4-5', 'DR5 > PRY5 > 5')
|
||||
string = string.replace('!4-C6', 'C6 > 6')
|
||||
string = string.replace('!4-C8', 'DR8 > PRY8 > C8 > 8')
|
||||
string = string.replace('!4-C12', 'C12 > 12')
|
||||
|
||||
if not for_simulate:
|
||||
string = string.replace('A2', 'E-315')
|
||||
string = string.replace('Z2', 'E-031')
|
||||
|
||||
if not cube:
|
||||
string = re.sub(r'(S4-)?H[124] > ', '', string)
|
||||
string = string.replace('H1 > 1 > reset > S4-H1', 'reset > S4-H1 > H1 > 1')
|
||||
string = string.replace('H1 > 1 > S4-H1', 'S4-H1 > H1 > 1')
|
||||
string = string.replace('H2 > 2 > S4-H2', 'S4-H2 > H2 > 2')
|
||||
string = string.replace('H4 > 4 > S4-H4', 'S4-H4 > H4 > 4')
|
||||
string = re.sub(r'S4', f'S{series}', string)
|
||||
|
||||
return beautify_filter(string)
|
||||
|
||||
|
||||
def convert_name(name, series):
|
||||
name = re.sub(r'series_\d', f'series_{series}', name)
|
||||
if 'series_5' in name:
|
||||
name = name.replace('tenrai', '152')
|
||||
if 'series_4' in name:
|
||||
pass
|
||||
if 'series_3' in name:
|
||||
name = name.replace('tenrai', '234')
|
||||
if 'series_2' in name:
|
||||
name = name.replace('tenrai', '457')
|
||||
return name
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from module.config.code_generator import *
|
||||
|
||||
Value(FILTER_STRING_SHORTEST='0.5 > 1 > 1.5 > 2 > 2.5 > 3 > 4 > 5 > 6 > 8 > 10 > 12')
|
||||
Value(
|
||||
FILTER_STRING_CHEAPEST='Q1 > Q2 > T3 > T4 > Q4 > C6 > T6 > C8 > C12 > G1.5 > D2.5 > G2.5 > D5 > Q0.5 > G4 > D8 > H1 > H2 > H0.5 > D0.5 > H4')
|
||||
with Dict('DICT_FILTER_PRESET'):
|
||||
for series in [5, 4, 3, 2]:
|
||||
def new_filter(**kwargs):
|
||||
for k, v in kwargs.items():
|
||||
k = convert_name(k, series)
|
||||
v = translate(v, target=k)
|
||||
DictItem(k, v)
|
||||
|
||||
# 1
|
||||
Comment("""
|
||||
Goal: DR_blurprint=0, PRY_blueprint=0, tanrai_blueprint=150
|
||||
Average time cost: 153.41706666666678
|
||||
Average rewards: [238.69016631 238.37881965 529.71190834 528.92520834 528.39586667 150.07973333]
|
||||
""")
|
||||
new_filter(series_4_tenrai_only_cube="""
|
||||
S4-Q0.5 > S4-DR0.5 > S4-PRY0.5 > S4-Q4 > S4-Q2 > S4-Q1 > !4-0.5
|
||||
> S4-A2 > S4-G1.5 > S4-G4 > !4-1 > reset > S4-H1 > S4-Z2
|
||||
> S4-DR2.5 > S4-PRY2.5 > S4-G2.5 > !4-1.5 > !4-2 > S4-H2 > !4-2.5 > S4-DR5 > S4-PRY5
|
||||
> !4-4 > S4-H4 > S4-C6 > !4-5 > S4-DR8 > S4-PRY8 > S4-C8 > !4-C6 > S4-C12
|
||||
> !4-C8 > !4-C12
|
||||
""")
|
||||
# 2
|
||||
Comment("""
|
||||
Goal: DR_blurprint=0, PRY_blueprint=0, tanrai_blueprint=150
|
||||
Average time cost: 161.37177965277806
|
||||
Average rewards: [241.92774575 241.13046242 421.82134358 421.04494941 420.46893024 150.07799978]
|
||||
""")
|
||||
new_filter(series_4_tenrai_only="""
|
||||
S4-Q0.5 > S4-PRY0.5 > S4-DR0.5 > S4-Q4 > S4-Q2 > S4-Q1 > S4-H0.5 > !4-0.5 > S4-A2
|
||||
> S4-G4 > S4-H1 > S4-G1.5 > !4-1 > S4-Z2 > S4-DR2.5 > reset
|
||||
> S4-G2.5 > S4-PRY2.5 > !4-1.5 > !4-2 > !4-2.5 > S4-H2 > S4-H4 > S4-DR5
|
||||
> S4-PRY5 > !4-4 > S4-C6 > !4-5 > S4-DR8 > S4-PRY8 > S4-C8 > !4-C6
|
||||
> !4-C8 > S4-C12 > !4-C12
|
||||
""")
|
||||
# 5
|
||||
Comment("""
|
||||
Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=100
|
||||
Average time cost: 124.67622465277958
|
||||
Average rewards: [531.93022864 529.81919864 510.27473326 510.18530159 510.11215826 100.8088164]
|
||||
""")
|
||||
new_filter(series_4_blueprint_tenrai_cube="""
|
||||
S4-DR0.5 > S4-Q0.5 > S4-PRY0.5 > S4-H0.5 > !4-0.5 > S4-DR2.5 > S4-Q1
|
||||
> S4-Q2 > S4-H1 > S4-A2 > S4-G1.5 > reset > S4-Q4 > S4-G4 > S4-H2
|
||||
> !4-1 > S4-G2.5 > S4-DR5 > S4-PRY2.5 > !4-1.5 > S4-Z2 > S4-DR8
|
||||
> !4-2 > !4-2.5 > S4-H4 > S4-PRY5 > !4-4 > S4-C6 > S4-PRY8 > !4-5 > !4-C6 > S4-C8
|
||||
> !4-C8 > S4-C12 > !4-C12
|
||||
""")
|
||||
# 6
|
||||
Comment("""
|
||||
Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=100
|
||||
Average time cost: 143.56399131945145
|
||||
Average rewards: [520.06195858 519.19883191 392.86544828 392.64870495 392.49383995 102.2368499]
|
||||
""")
|
||||
new_filter(series_4_blueprint_tenrai="""
|
||||
S4-DR0.5 > S4-PRY0.5 > S4-Q0.5 > S4-H1 > S4-H0.5 > S4-DR2.5 > S4-G1.5
|
||||
> S4-Q1 > S4-DR5 > !4-0.5 > S4-G4 > S4-Q2 > S4-PRY2.5 > reset > S4-DR8
|
||||
> !4-1 > S4-A2 > S4-G2.5 > S4-H2 > !4-1.5 > S4-Z2 > S4-H4
|
||||
> S4-Q4 > !4-2 > !4-2.5 > S4-PRY5 > S4-PRY8 > !4-4 > S4-C6 > !4-5 > !4-C6 > S4-C8
|
||||
> S4-C12 > !4-C8 > !4-C12
|
||||
""")
|
||||
# 3
|
||||
Comment("""
|
||||
Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=0
|
||||
Average time cost: 82.0121088194467
|
||||
Average rewards: [519.0311752 514.64003687 653.77171198 653.72126532 653.66129615 26.97694791]
|
||||
""")
|
||||
new_filter(series_4_blueprint_only_cube="""
|
||||
S4-DR0.5 > S4-PRY0.5 > S4-H0.5 > S4-H1 > S4-H2 > S4-DR2.5 > S4-DR5 > S4-Q0.5
|
||||
> !4-0.5 > S4-DR8 > reset > S4-H4 > S4-Q1 > !4-1 > S4-G1.5 > !4-1.5
|
||||
> S4-G2.5 > S4-Q2 > S4-A2 > S4-Z2 > !4-2 > S4-PRY2.5 > S4-G4 > !4-2.5
|
||||
> S4-Q4 > !4-4 > S4-PRY5 > S4-PRY8 > S4-C6 > !4-5 > !4-C6 > S4-C8
|
||||
> S4-C12 > !4-C8 > !4-C12
|
||||
""")
|
||||
# 4
|
||||
Comment("""
|
||||
Goal: DR_blurprint=513, PRY_blueprint=343, tanrai_blueprint=0
|
||||
Average time cost: 124.71616166666873
|
||||
Average rewards: [514.96354877 514.70099977 355.58865468 354.96831385 354.66888635 56.48432238]
|
||||
""")
|
||||
new_filter(series_4_blueprint_only="""
|
||||
S4-DR0.5 > S4-H0.5 > S4-PRY0.5 > S4-DR8 > S4-DR5
|
||||
> S4-DR2.5 > S4-G1.5 > S4-PRY2.5 > S4-Q0.5 > !4-0.5 > S4-G2.5 > S4-G4
|
||||
> reset > S4-Q1 > !4-1 > S4-PRY5 > !4-1.5 > S4-Q2 > S4-Z2 > S4-A2 > !4-2 > S4-PRY8
|
||||
> !4-2.5 > S4-Q4 > !4-4 > S4-C6 > !4-5 > !4-C6 > S4-C8
|
||||
> !4-C8 > S4-C12 > !4-C12
|
||||
""")
|
||||
|
||||
Comment('Old community filters')
|
||||
DictItem(series_2_than_3_457_234=beautify_filter("""
|
||||
S2-Q0.5 > S2-PRY0.5 > S2-DR0.5 > S2-Q4 > S2-Q1 > S2-Q2 > S2-H0.5 > 0.5
|
||||
> S3-Q1 > S3-Q2 > S2-G4 > S3-Q4 > S2-G1.5 > S2-DR2.5 > reset > Q1 > S2-PRY2.5 > S2-G2.5 > H1 > 1.5
|
||||
> Q2 > 2.5 > S2-DR5 > S2-PRY5 > Q4 > G4 > 5 > H2 > S2-C6 > S2-DR8 > S2-PRY8 > S2-C8
|
||||
> 6 > 8 > 4 > S2-C12 > 12
|
||||
"""))
|
||||
from module.logger import logger
|
||||
generator.write('./module/research/preset.py')
|
Loading…
Reference in New Issue
Block a user